Patents by Inventor Clifford Headley

Clifford Headley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7787733
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 31, 2010
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Patent number: 7760978
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: July 20, 2010
    Assignee: DFS Fitel LLC
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20090067795
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 12, 2009
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20090016681
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: September 8, 2008
    Publication date: January 15, 2009
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Patent number: 7437046
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: October 14, 2008
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20080193093
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Patent number: 6836606
    Abstract: A filled-core optical fiber and method where the optical fiber is collapsed at opposing ends subsequent to the active optical material being introduced into the hollow core region. The collapsing-functions to “pinch off” the active material (which may be a liquid or solid) within the fiber structure and also collapse the cladding layer ring surrounding the core into a solid core region on either side of the active material. The filled-core fiber is then sealed and can be coupled to standard fiber using conventional splicing processes.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: December 28, 2004
    Assignee: Fitel U.S.A. Corp.
    Inventors: Akheelesh Abeeluck, Benjamin Eggleton, Clifford Headley, Abds-Sami Malik, Stephan Wielandy
  • Patent number: 6807338
    Abstract: A multi-wavelength cascaded Raman resonator (“MWCRR”). The MWCRR has an optical source for pumping optical radiation centered around an input wavelength. The MWCRR further includes a Raman fiber having at least a first set of optical gratings for converting the pumped optical radiation to wavelengths other than the input wavelength. The Raman fiber also has at least one adjustable output coupler having a variable reflectivity for controlling the power of the optical radiation propagating from the at least one set of optical gratings at the wavelengths other than the input wavelength.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: October 19, 2004
    Assignee: Fitel USA Corp.
    Inventors: Jean-Christophe Bouteiller, Benjamin John Eggleton, Clifford Headley, Paul Steinvurzel
  • Publication number: 20040136670
    Abstract: A filled-core optical fiber and method where the optical fiber is collapsed at opposing ends subsequent to the active optical material being introduced into the hollow core region. The collapsing-functions to “pinch off” the active material (which may be a liquid or solid) within the fiber structure and also collapse the cladding layer ring surrounding the core into a solid core region on either side of the active material. The filled-core fiber is then sealed and can be coupled to standard fiber using conventional splicing processes.
    Type: Application
    Filed: January 15, 2003
    Publication date: July 15, 2004
    Inventors: Akheelesh Abeeluck, Benjamin Eggleton, Clifford Headley, Abds-Sami Malik, Stephen Wielandy
  • Patent number: 6748136
    Abstract: The specification describes a distributed Raman amplifier with multiple pump sources for wide band amplification of wavelength division multiplexed (WDM) signals. It was recognized that using multiple pump sources introduces non-linear effects, such as four wave mixing (FWM). These effects are reduced by multiplexing the pump wavelengths in the multiple pump source. It was also recognized that not all of the pump wavelengths over the wavelength spectrum of the pumps contributes to FWM. Thus fewer than all of the pump wavelengths require multiplexing to eliminate FWM in the multiple wavelength pump source. Various approaches are described to ensure that the pump wavelengths do not interact in FWM in the transmission span. The selected individual pump wavelengths may be either time division multiplexed, or frequency modulated.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 8, 2004
    Assignee: Fitel USA Corp.
    Inventors: Clifford Headley, Marc Mermelstein
  • Patent number: 6721088
    Abstract: In accordance with the invention, an optical fiber communication system comprising a source of optical signal channels and an optical fiber transmission line is provided with one or more single source, multiple-order Raman pumps downstream of the source. Each single source pump provides multiple-order Raman pump light for amplifying the signal channels.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 13, 2004
    Assignee: OFS Fitel
    Inventors: Khushvinder Brar, Clifford Headley, Jean-Christopher Bouteiller, Jake Bromage
  • Publication number: 20030174388
    Abstract: In accordance with the invention, an optical fiber communication system comprising a source of optical signal channels and an optical fiber transmission line is provided with one or more single source, multiple-order Raman pumps downstream of the source. Each single source pump provides multiple-order Raman pump light for amplifying the signal channels.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Khushvinder Brar, Clifford Headley, Jean-Christopher Bouteiller, Jake Bromage
  • Publication number: 20030174938
    Abstract: The specification describes a distributed Raman amplifier with multiple pump sources for wide band amplification of wavelength division multiplexed (WDM) signals. It was recognized that using multiple pump sources introduces non-linear effects, such as four wave mixing (FWM). These effects are reduced by multiplexing the pump wavelengths in the multiple pump source. It was also recognized that not all of the pump wavelengths over the wavelength spectrum of the pumps contributes to FWM. Thus fewer than all of the pump wavelengths require multiplexing to eliminate FWM in the multiple wavelength pump source. Various approaches are described to ensure that the pump wavelengths do not interact in FWM in the transmission span. The selected individual pump wavelengths may be either time division multiplexed, or frequency modulated.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Clifford Headley, Marc Mermelstein
  • Publication number: 20020126956
    Abstract: A multi-wavelength cascaded Raman resonator (“MWCRR”). The MWCRR has an optical source for pumping optical radiation centered around an input wavelength. The MWCRR further includes a Raman fiber having at least a first set of optical gratings for converting the pumped optical radiation to wavelengths other than the input wavelength. The Raman fiber also has at least one adjustable output coupler having a variable reflectivity for controlling the power of the optical radiation propagating from the at least one set of optical gratings at the wavelengths other than the input wavelength.
    Type: Application
    Filed: September 27, 2001
    Publication date: September 12, 2002
    Inventors: Jean-Christophe Bouteiller, Benjamin John Eggleton, Clifford Headley, Paul Steinvurzel
  • Patent number: 5953353
    Abstract: At least some rare earth-doped optical fiber lasers are subject to self-pulsing and/or relatively high noise. We have found that these shortcomings can be eliminated if the cavity length of the fiber laser is increased, typically by inclusion of a length .LAMBDA. of rare earth-free conventional (single mode) transmission fiber in the cavity, with .LAMBDA.>0.3L, where L is the effective cavity length of the laser.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: September 14, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Clifford Headley, Kenneth Lee Walker
  • Patent number: 5851259
    Abstract: In accordance with the invention, a Ge-doped optical fiber having reduced Brillouin scattering loss is made by modulating the tension applied to the fiber during draw. The draw tension is modulated between a low range 10-50 g and a high in the range 150-250 g. The result is SBS suppression with no significant change to end-to-end fiber loss or dispersion factors.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: December 22, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Jane Bilecky Clayton, Lars Erik Eskildsen, Per Bang Hansen, Clifford Headley, William Alfred Reed
  • Patent number: 5805621
    Abstract: Applicants have discovered that the intermodal beat noise of a fiber multimode laser can be substantially reduced by providing the fiber with an output coupler of broadened bandwidth. In a preferred embodiment, a reduced-noise, high power light source comprises a cladding pumped fiber laser having a chirped output grating. Experiments show that increasing the output bandwidth from 0.254 to 0.577 nm reduces the relative intensity-to-noise ratio 10 dB in a Nd-doped fiber laser. Increasing the bandwidth from 0.2 nm to 0.3 nm in a Yb-doped laser similarly reduces the noise by 12 dB.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: September 8, 1998
    Assignee: Lucent Technologies, Inc.
    Inventors: Stephen Gregory Grubb, Clifford Headley, Martin Heinrich Muendel, Janet Renee Pedrazzani, Bennett H. Rockney, Thomas A. Strasser