Patents by Inventor Clifton R. Haider

Clifton R. Haider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240374149
    Abstract: In accordance with some embodiments, systems, methods, and media for estimating compensatory reserve and predicting hemodynamic decompensation using physiological data are provided. In some embodiments, a system for estimating compensatory reserve is provided, the system comprising: a processor programmed to: receive a blood pressure waveform of a subject; generate a first sample of the blood pressure waveform with a first duration; provide the sample as input to a trained CNN that was trained using samples of the first duration from blood pressure waveforms recorded from subjects while decreasing the subject's central blood volume, each sample being associated with a compensatory reserve metric; receive, from the trained CNN, a first compensatory reserve metric based on the first sample; and cause information indicative of remaining compensatory reserve to be presented.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Robert W. Techentin, Timothy B. Curry, Michael J. Joyner, David R. Holmes, III, Clifton R. Haider, Christopher L. Felton, Barry K. Gilbert, Charlotte Sue Van Dorn, William A. Carey, Victor A. Convertino
  • Patent number: 12102450
    Abstract: Systems and methods are provided for evaluating physiological signal quality. A physiological signal, based on a series measurements on a subject, may be received. A quality of the physiological signal received may be evaluated, and an analysis of the physiological signal may be based at least in part on the quality evaluation.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: October 1, 2024
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Lukas Smital, David R. Holmes, III, Clifton R. Haider, Barry K. Gilbert
  • Patent number: 12076120
    Abstract: In accordance with some embodiments, systems, methods, and media for estimating compensatory reserve and predicting hemodynamic decompensation using physiological data are provided. In some embodiments, a system for estimating compensatory reserve is provided, the system comprising: a processor programmed to: receive a blood pressure waveform of a subject; generate a first sample of the blood pressure waveform with a first duration; provide the sample as input to a trained CNN that was trained using samples of the first duration from blood pressure waveforms recorded from subjects while decreasing the subject's central blood volume, each sample being associated with a compensatory reserve metric; receive, from the trained CNN, a first compensatory reserve metric based on the first sample; and cause information indicative of remaining compensatory reserve to be presented.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: September 3, 2024
    Assignees: Mayo Foundation for Medical Education and Research, The Government of the United States, as Represented by the Secretary of the Army
    Inventors: Robert W. Techentin, Timothy B. Curry, Michael J. Joyner, Clifton R. Haider, David R. Holmes, III, Christopher L. Felton, Barry K. Gilbert, Charlotte Sue Van Dorn, William A. Carey, Victor A. Convertino
  • Publication number: 20240188832
    Abstract: An example system includes an annular support structure defining an aperture, a plurality of light emitters secured to the annular support structure, a plurality of light sensors secured to the annular support structure, and a computer system communicatively coupled to the light emitters and the light sensors. The light emitters are configured to emit a plurality of photons into the aperture. The light sensors are configured to obtain measurement data regarding one or more of the photons reflecting and/or scattering from a subject disposed within the aperture. The computer system is configured to determine one or more properties of the subject based on the measurement data.
    Type: Application
    Filed: April 13, 2022
    Publication date: June 13, 2024
    Inventors: David Giardi, Clifton R. Haider, Antonio J. Forte, Rickey E. Carter, Christopher J. McLeod, Charles J. Bruce
  • Patent number: 11969250
    Abstract: This specification discloses a brain electrode device. The brain electrode device includes a set of contact points and a set of sub-circuits. The sub-circuits include sensor ports configured to connect to the contact to the respective ones of the contact points. The device can further include an intelligent multiplexer that aggregates signals from the set of sub-circuits and generates an aggregate signal. The aggregate signal is transmitted to a signal acquisition device.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: April 30, 2024
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Patrick J. Zabinski, Gregory A. Worrell, Clifton R. Haider
  • Patent number: 11923876
    Abstract: In accordance with some embodiments of the disclosed subject matter, mechanisms (which can, for example, include systems, methods, and media) for low-power encoding of continuous physiological signals are provided. In some embodiments, a system comprises: a physiological sensor; and a remote monitor comprising: a battery; memory storing a k-ary tree including a root with k branches corresponding to k delta values, k nodes at a first depth below the Leads root node each having k branches corresponding to the k delta values the nodes indexed to indicate the lateral position of the node within the depth; a processor programmed to: receive a first sample value from the sensor; receive a second sample value; calculate a difference between the second first sample values; determine that the delta corresponds to a first delta of the k delta values; encode a sequence of deltas based on a depth and node index.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 5, 2024
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Christopher L. Felton, Barry K. Gilbert, Clifton R. Haider
  • Publication number: 20220369985
    Abstract: An electrode system is provided for sensing and/or stimulating a brain while reducing risk associated with the sensing and stimulation. The system is scalable to different numbers of contacts to span large areas of the brain. The system includes an electrode array made with a plurality of patches connected together physically and electrically. The array and/or each patch can have its own respective intelligent multiplexer and/or intelligent demultiplexer to aggregate the respective sense and/or stimulate signals, thereby reducing the wire count down to a single wire or wireless link. The array or each patch can have an embedded ground plane, thus minimizing the susceptibility to external EM noise. Moreover, the physical resolution of the array or each patch can be adjusted as needed.
    Type: Application
    Filed: November 13, 2020
    Publication date: November 24, 2022
    Inventors: Patrick J. Zabinski, Gregory A. Worrell, Clifton R. Haider
  • Patent number: 11473976
    Abstract: Spectrophotometer system configured to characterize and/or measure spectrally (wavelength)-dependent properties of material components (such as molecular, viral, and/or bacterial analytes) associated with or of an object prior to the time when optical fingerprints of such material components start to degrade, and associated methods. System can be enhanced by a capability of selecting specific wavelengths of operation for such system to optimize cost-efficiency of the system.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 18, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Daniel J. Schwab, Gary S. Delp, Clifton R. Haider, Barry K. Gilbert, Nathan E. Harff
  • Publication number: 20220110590
    Abstract: Systems and methods are provided for evaluating physiological signal quality. A physiological signal, based on a series measurements on a subject, may be received. A quality of the physiological signal received may be evaluated, and an analysis of the physiological signal may be based at least in part on the quality evaluation.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Lukas Smital, David R. Holmes, Clifton R. Haider, Barry K. Gilbert
  • Patent number: 11229403
    Abstract: Systems and methods are provided for evaluating physiological signal quality. A physiological signal, based on a series measurements on a subject, may be received. A quality of the physiological signal received may be evaluated, and an analysis of the physiological signal may be based at least in part on the quality evaluation.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: January 25, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Lukas Smital, David R. Holmes, III, Clifton R. Haider, Barry K. Gilbert
  • Publication number: 20210404875
    Abstract: Spectrophotometer system configured to characterize and/or measure spectrally (wavelength)-dependent properties of material components (such as molecular, viral, and/or bacterial analytes) associated with or of an object prior to the time when optical fingerprints of such material components start to degrade, and associated methods. System can be enhanced by a capability of selecting specific wavelengths of operation for such system to optimize cost-efficiency of the system.
    Type: Application
    Filed: October 8, 2019
    Publication date: December 30, 2021
    Inventors: Daniel J. Schwab, Gary S. Delp, Clifton R. Haider, Barry K. Gilbert, Nathan E. Harff
  • Publication number: 20210306000
    Abstract: In accordance with some embodiments of the disclosed subject matter, mechanisms (which can, for example, include systems, methods, and media) for low-power encoding of continuous physiological signals are provided. In some embodiments, a system comprises: a physiological sensor; and a remote monitor comprising: a battery; memory storing a k-ary tree including a root with k branches corresponding to k delta values, k nodes at a first depth below the root node each having k branches corresponding to the k delta values the nodes indexed to indicate the lateral position of the node within the depth; a processor programmed to: receive a first sample value from the sensor; receive a second sample value; calculate a difference between the second first sample values; determine that the delta corresponds to a first delta of the k delta values; encode a sequence of deltas based on a depth and node index.
    Type: Application
    Filed: July 15, 2019
    Publication date: September 30, 2021
    Inventors: Christopher L. Felton, Barry K. Gilbert, Clifton R. Haider
  • Publication number: 20210145346
    Abstract: In accordance with some embodiments of the disclosed subject matter, mechanisms for efficient real-time embedded processing of physiological signals using S transforms are provided. In some embodiments, a system comprises: a sensor configured to monitor at least one condition of the subject and generate physiological feedback data; a processor configured to receive the physiological feedback data from the sensor and programmed to: implement a ECG Leads filter bank with a predetermined number of coefficients and taps selected to perform a Stockwell transform on the physiological feedback data and provide a frequency domain data of the physiological feedback data; analyze the frequency domain data using a physiological monitoring criteria; generate a report about the physiological condition of the subject based on the analysis of the frequency domain data using the physiological monitoring criteria; a display configured to display the report about the physiological condition of the subject.
    Type: Application
    Filed: July 11, 2018
    Publication date: May 20, 2021
    Inventors: David R. Holmes, III, Clifton R. Haider, Lukas Smital, Samuel Cerqueira Pinto, Christopher L. Felton
  • Patent number: 10984646
    Abstract: A fall detection system includes a plurality of sensors in which at least one of the sensors is coupled to or disposed near a floor. The fall detection system further includes a central monitoring system in signal communication with the plurality of sensors. The central monitoring system is configured to receive a response signal in response to an activation signal being transmitted from at least one of the plurality of sensors, and determine whether the response signal is indicative of a person being arranged in a prone position on the floor.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 20, 2021
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Daniel J. Schwab, Barry K. Gilbert, Clifton R. Haider, Mark E. Vickberg, Gary S. Delp, Christopher L. Felton, Patrick J. Zabinski
  • Publication number: 20210022620
    Abstract: In accordance with some embodiments, systems, methods, and media for estimating compensatory reserve and predicting hemodynamic decompensation using physiological data are provided. In some embodiments, a system for estimating compensatory reserve is provided, the system comprising: a processor programmed to: receive a blood pressure waveform of a subject; generate a first sample of the blood pressure waveform with a first duration; provide the sample as input to a trained CNN that was trained using samples of the first duration from blood pressure waveforms recorded from subjects while decreasing the subject's central blood volume, each sample being associated with a compensatory reserve metric; receive, from the trained CNN, a first compensatory reserve metric based on the first sample; and cause information indicative of remaining compensatory reserve to be presented.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 28, 2021
    Inventors: Robert W. Techentin, Timothy B. Curry, Michael J. Joyner, David R. Holmes, III, Clifton R. Haider, Christopher L. Felton, Barry K. Gilbert, Charlotte Sue Van Dorn, William A. Carey
  • Publication number: 20200264303
    Abstract: In accordance with some embodiments of the disclosed subject matter, mechanisms (which can, for example, include systems, apparatuses, methods, and media) for determining three dimensional location of an object associated with a person at risk of falling down are provided.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Inventors: Daniel J. Schwab, Christopher L. Felton, Bruce R. Kline, Barry K. Gilbert, Gary S. Delp, Clifton R. Haider
  • Publication number: 20200037961
    Abstract: Systems and methods are provided for evaluating physiological signal quality. A physiological signal, based on a series measurements on a subject, may be received. A quality of the physiological signal received may be evaluated, and an analysis of the physiological signal may be based at least in part on the quality evaluation.
    Type: Application
    Filed: January 16, 2018
    Publication date: February 6, 2020
    Inventors: Lukas Smital, David R. Holmes, III, Clifton R. Haider, Barry K. Gilbert
  • Publication number: 20190333354
    Abstract: A fall detection system includes a plurality of sensors in which at least one of the sensors is coupled to or disposed near a floor. The fall detection system further includes a central monitoring system in signal communication with the plurality of sensors. The central monitoring system is configured to receive a response signal in response to an activation signal being transmitted from at least one of the plurality of sensors, and determine whether the response signal is indicative of a person being arranged in a prone position on the floor.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 31, 2019
    Applicant: Mayo Foundation for Medical Education and Research
    Inventors: Daniel J. SCHWAB, Barry K. GILBERT, Clifton R. HAIDER, Mark E. VICKBERG, Gary S. DELP, Christopher L. FELTON, Patrick J. ZABINSKI
  • Patent number: 10260947
    Abstract: A system and method of dynamically localizing a measurement of parameter characterizing tissue sample with waves produced by spectrometric system at multiple wavelengths and detected at a fixed location of the detector of the system. The parameter is calculated based on impulse response of the sample, reference data representing characteristics of material components of the sample, and path lengths through the sample corresponding to different wavelengths. Dynamic localization is effectuated by considering different portions of a curve representing the determined parameter, and provides for the formation of a spatial map of distribution of the parameter across the sample. Additional measurement of impulse response at multiple detectors facilitates determination of change of the measured parameter across the sample as a function of time.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: April 16, 2019
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Clifton R. Haider, James A. Rose, Gary S. Delp, Barry K. Gilbert
  • Publication number: 20190033135
    Abstract: A system and method of dynamically localizing a measurement of parameter characterizing tissue sample with waves produced by spectrometric system at multiple wavelengths and detected at a fixed location of the detector of the system. The parameter is calculated based on impulse response of the sample, reference data representing characteristics of material components of the sample, and path lengths through the sample corresponding to different wavelengths. Dynamic localization is effectuated by considering different portions of a curve representing the determined parameter, and provides for the formation of a spatial map of distribution of the parameter across the sample. Additional measurement of impulse response at multiple detectors facilitates determination of change of the measured parameter across the sample as a function of time.
    Type: Application
    Filed: August 6, 2018
    Publication date: January 31, 2019
    Inventors: Clifton R. Haider, James A. Rose, Gary S. Delp, Barry K. Gilbert