Patents by Inventor Clive Tucker

Clive Tucker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10040330
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: August 7, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Publication number: 20180216639
    Abstract: Presented herein are systems and methods that allow for adapting at least one dimension of an accumulator in a hydraulic system when faced with certain dimensional constraints and to vary the compliance or stiffness of an accumulator.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 2, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Clive Tucker, Jason Steven Sirois, Jack A. Ekchian
  • Patent number: 10029534
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 24, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil, Shakeel Avadhany
  • Publication number: 20180178612
    Abstract: An active suspension system is configured in a strut arrangement. The active suspension system comprises a hydraulic actuator and a hydraulic pump/electric motor assembly, wherein the actuator movement is preferably in lockstep with the hydraulic motor-pump and electric motor-generator combination. Torque in the electric motor is instantaneously controlled by a controller to create an immediate force change on the hydraulic actuator. The hydraulic actuator is configured so that it can be used as a strut whereby the actuator has sufficient structural rigidity to carry the applied suspension loads while capable of supplying damper forces in at least three quadrants of the force velocity graph of the suspension actuator operation. Embodiments disclosed include low cost active suspension systems for a MacPherson strut application.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 28, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Clive Tucker, Zackary Martin Anderson, David Michael Lewis, Ross J. Wendell, Alexander Apostolos Alexandridis
  • Publication number: 20180162186
    Abstract: In one embodiment, one or more suspension systems of a vehicle may be used to mitigate motion sickness by limiting motion in one or more frequency ranges. In another embodiment, an active suspension may be integrated with an autonomous vehicle architecture. In yet another embodiment, the active suspension system of a vehicle may be used to induce motion in a vehicle. The vehicle may be used as a testbed for technical investigations and/or as a platform to enhance the enjoyment of video and/or audio by vehicle occupants. In some embodiments, the active suspensions system may be used to perform gestures as a means of communication with persons inside or outside the vehicle. In some embodiments, the active suspensions system may be used to generate haptic warnings to a vehicle operator or other persons in response to certain road situations.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 14, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Jack A. Ekchian, Olivia D. Godwin, Clive Tucker, John A. Laplante, William Graves, Shakeel Avadhany, Michael W. Finnegan
  • Publication number: 20180134106
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: May 17, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9868332
    Abstract: In one embodiment, one or more suspension systems of a vehicle may be used to mitigate motion sickness by limiting motion in one or more frequency ranges. In another embodiment, an active suspension may be integrated with an autonomous vehicle architecture. In yet another embodiment, the active suspension system of a vehicle may be used to induce motion in a vehicle. The vehicle may be used as a testbed for technical investigations and/or as a platform to enhance the enjoyment of video and/or audio by vehicle occupants. In some embodiments, the active suspensions system may be used to perform gestures as a means of communication with persons inside or outside the vehicle. In some embodiments, the active suspensions system may be used to generate haptic warnings to a vehicle operator or other persons in response to certain road situations.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 16, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Jack A. Ekchian, Olivia D. Godwin, Clive Tucker, John A. Laplante, William Graves, Shakeel Avadhany, Michael W. Finnegan
  • Patent number: 9855814
    Abstract: An active suspension system is configured in a strut arrangement. The active suspension system comprises a hydraulic actuator and a hydraulic pump/electric motor assembly, wherein the actuator movement is preferably in lockstep with the hydraulic motor-pump and electric motor-generator combination. Torque in the electric motor is instantaneously controlled by a controller to create an immediate force change on the hydraulic actuator. The hydraulic actuator is configured so that it can be used as a strut whereby the actuator has sufficient structural rigidity to carry the applied suspension loads while capable of supplying damper forces in at least three quadrants of the force velocity graph of the suspension actuator operation. Embodiments disclosed include low cost active suspension systems for a MacPherson strut application.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: January 2, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Clive Tucker, Zackary Martin Anderson, David Michael Lewis, Ross J. Wendell, Alexander Apostolos Alexandridis
  • Publication number: 20170321667
    Abstract: A linear energy harvesting device that includes a housing and a piston that moves at least partially through the housing when it is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor drives an electric generator that produces electricity. Both the motor and generator are central to the device housing. Exemplary configurations are disclosed such as monotube, twin-tube, tri-tube and rotary based designs that each incorporates an integrated energy harvesting apparatus. By varying the electrical characteristics on an internal generator, the kinematic characteristics of the energy harvesting apparatus can be dynamically altered. In another mode, the apparatus can be used as an actuator to create linear movement.
    Type: Application
    Filed: June 12, 2017
    Publication date: November 9, 2017
    Applicant: ClearMotion, Inc.
    Inventors: Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Evan Moen, Johannes Schneider, Zachary J. Jackowski, Sean C. Morton
  • Patent number: 9809078
    Abstract: A multi-path fluid flow control valve for a shock absorber that restricts fluid into a first path while opening fluid flow to a second path when a given fluid flow velocity is reached. Exemplary configurations of this diverter valve are disclosed such as a spring loaded disc valve with face sealing lands, and a spool valve with diametric sealing lands. Applications include active suspension dampers in order to limit maximum RPM into a hydraulic motor. For such a system, in one mode the diverter valve allows fluid to move unrestricted into the hydraulic motor. When fluid velocity reaches a tunable set point, in a second mode the diverter valve restricts flow into the hydraulic motor and bypasses it shuttling fluid into the opposite side of the damper. In some cases progressive damping valves are utilized in series or parallel to smooth damping characteristics during, before, and after transitions.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 7, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Clive Tucker, Johannes Schneider, Colin Patrick O'Shea, Marco Giovanardi, Richard Anthony Zuckerman, Patrick W. Neil
  • Publication number: 20170225534
    Abstract: A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 10, 2017
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jonathan R. Leehey, Colin Patrick O'Shea, Johannes Schneider, Vladimir Gorelik, Richard Anthony Zuckerman, Patrick W. Neil, Tyson David Sawyer, Ross J. Wendell
  • Patent number: 9707814
    Abstract: An active suspension system for a truck cabin that actively responds to and mitigates external force inputs between the truck chassis and the cabin. The system greatly reduces pitch, roll, and heave motions that lead to operator discomfort. The assembly is comprised of two or more self-contained actuators that respond to commands from an electronic controller. The controller commands the actuators based on feedback from one or more sensors on the cabin and/or chassis.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: July 18, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Richard Anthony Zuckerman, Clive Tucker, Johannes Schneider, John Giarratana
  • Patent number: 9702349
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: July 11, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9702424
    Abstract: Hydraulic bump stops and bi-directional diverter valves may be used to protect hydraulic systems, including, for example in one embodiment, the hydraulic actuators of an active suspension system, from damage due to operation outside the normal operating range of the system. In some embodiments, a hydraulic bump stop may be used to slow down the motion of a piston at the extremes of the compression and/or extension strokes of an actuator. In another embodiment, a diverter valve may be used to protect a hydraulic motor/pump in a hydraulic system from an over-speed condition. When the piston in an active suspension system actuator moves at a speed in excess of a threshold value, one or more diverter valves may be used to divert flow away from the hydraulic motor/pump. In some embodiments, a diverter valve may be a dual or single spool bi-directional diverter valve.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 11, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Richard Anthony Zuckerman, Clive Tucker, Colin Patrick O'Shea, Jack A. Ekchian
  • Publication number: 20170182859
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 29, 2017
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9689382
    Abstract: A linear energy harvesting device that includes a housing and a piston that moves at least partially through the housing when it is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor drives an electric generator that produces electricity. Both the motor and generator are central to the device housing. Exemplary configurations are disclosed such as monotube, twin-tube, tri-tube and rotary based designs that each incorporates an integrated energy harvesting apparatus. By varying the electrical characteristics on an internal generator, the kinematic characteristics of the energy harvesting apparatus can be dynamically altered. In another mode, the apparatus can be used as an actuator to create linear movement.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: June 27, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Evan Moen, Johannes Schneider, Zachary J. Jackowski, Sean C. Morton
  • Patent number: 9676244
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 13, 2017
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, John Giarratana, Richard Anthony Zuckerman, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil
  • Publication number: 20170136842
    Abstract: In one embodiment, one or more suspension systems of a vehicle may be used to mitigate motion sickness by limiting motion in one or more frequency ranges. In another embodiment, an active suspension may be integrated with an autonomous vehicle architecture. In yet another embodiment, the active suspension system of a vehicle may be used to induce motion in a vehicle. The vehicle may be used as a testbed for technical investigations and/or as a platform to enhance the enjoyment of video and/or audio by vehicle occupants. In some embodiments, the active suspensions system may be used to perform gestures as a means of communication with persons inside or outside the vehicle. In some embodiments, the active suspensions system may be used to generate haptic warnings to a vehicle operator or other persons in response to certain road situations.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 18, 2017
    Applicant: Levant Power Corporation
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Jack A. Ekchian, Olivia D. Godwin, Clive Tucker, John A. Laplante, William Graves, Shakeel Avadhany, Michael W. Finnegan
  • Publication number: 20170137023
    Abstract: In some embodiments, a rapid-response active suspension system controls suspension force and position for improving vehicle safety and drivability. The system may interface with various sensors that detect safety critical vehicle states and adjust the suspension of each wheel to improve safety. Pre-crash and collision sensors may notify the active suspension controller of a collision and the stance may be adjusted to improve occupant safety during an impact while maintaining active control of the wheels. Wheel forces may also be controlled to improve the effectiveness of vehicle safety systems such as ABS and ESP in order to improve traction. Also, bi-directional information may be communicated between the active suspension system and other vehicle safety systems such that each system may respond to information provided to the other.
    Type: Application
    Filed: April 1, 2015
    Publication date: May 18, 2017
    Applicant: Levant Power Corporation
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jack A. Ekchian
  • Patent number: 9597940
    Abstract: A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: March 21, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jonathan R. Leehey, Colin Patrick O'Shea, Johannes Schneider, Vladimir Gorelik, Richard Anthony Zuckerman, Patrick W. Neil, Tyson David Sawyer, Ross J. Wendell