Patents by Inventor Cole Christian Gulino

Cole Christian Gulino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096083
    Abstract: A computer-implemented method for determining scene-consistent motion forecasts from sensor data can include obtaining scene data including one or more actor features. The computer-implemented method can include providing the scene data to a latent prior model, the latent prior model configured to generate scene latent data in response to receipt of scene data, the scene latent data including one or more latent variables. The computer-implemented method can include obtaining the scene latent data from the latent prior model. The computer-implemented method can include sampling latent sample data from the scene latent data. The computer-implemented method can include providing the latent sample data to a decoder model, the decoder model configured to decode the latent sample data into a motion forecast including one or more predicted trajectories of the one or more actor features.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Sergio Casas, Cole Christian Gulino, Shun Da Suo, Katie Z. Luo, Renjie Liao, Raquel Urtasun
  • Publication number: 20240054407
    Abstract: The present disclosure provides systems and methods for training probabilistic object motion prediction models using non-differentiable representations of prior knowledge. As one example, object motion prediction models can be used by autonomous vehicles to probabilistically predict the future location(s) of observed objects (e.g., other vehicles, bicyclists, pedestrians, etc.). For example, such models can output a probability distribution that provides a distribution of probabilities for the future location(s) of each object at one or more future times. Aspects of the present disclosure enable these models to be trained using non-differentiable prior knowledge about motion of objects within the autonomous vehicle's environment such as, for example, prior knowledge about lane or road geometry or topology and/or traffic information such as current traffic control states (e.g., traffic light status).
    Type: Application
    Filed: October 26, 2023
    Publication date: February 15, 2024
    Inventors: Sergio Casas, Cole Christian Gulino, Shun Da Suo, Raquel Urtasun
  • Patent number: 11860636
    Abstract: Systems and methods are provided for detecting objects of interest. A computing system can input sensor data to one or more first machine-learned models associated with detecting objects external to an autonomous vehicle. The computing system can obtain as an output of the first machine-learned models, data indicative of one or more detected objects. The computing system can determine data indicative of at least one uncertainty associated with the one or more detected objects and input the data indicative of the one or more detected objects and the data indicative of the at least one uncertainty to one or more second machine-learned models. The computing system can obtain as an output of the second machine-learned models, data indicative of at least one prediction associated with the one or more detected objects. The at least one prediction can be based at least in part on the detected objects and the uncertainty.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: January 2, 2024
    Assignee: UATC, LLC
    Inventors: Cole Christian Gulino, Alexander Rashid Ansari
  • Patent number: 11842530
    Abstract: A computer-implemented method for determining scene-consistent motion forecasts from sensor data can include obtaining scene data including one or more actor features. The computer-implemented method can include providing the scene data to a latent prior model, the latent prior model configured to generate scene latent data in response to receipt of scene data, the scene latent data including one or more latent variables. The computer-implemented method can include obtaining the scene latent data from the latent prior model. The computer-implemented method can include sampling latent sample data from the scene latent data. The computer-implemented method can include providing the latent sample data to a decoder model, the decoder model configured to decode the latent sample data into a motion forecast including one or more predicted trajectories of the one or more actor features.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 12, 2023
    Assignee: UATC, LLC
    Inventors: Sergio Casas, Cole Christian Gulino, Shun Da Suo, Katie Z. Luo, Renjie Liao, Raquel Urtasun
  • Patent number: 11836585
    Abstract: The present disclosure provides systems and methods for training probabilistic object motion prediction models using non-differentiable representations of prior knowledge. As one example, object motion prediction models can be used by autonomous vehicles to probabilistically predict the future location(s) of observed objects (e.g., other vehicles, bicyclists, pedestrians, etc.). For example, such models can output a probability distribution that provides a distribution of probabilities for the future location(s) of each object at one or more future times. Aspects of the present disclosure enable these models to be trained using non-differentiable prior knowledge about motion of objects within the autonomous vehicle's environment such as, for example, prior knowledge about lane or road geometry or topology and/or traffic information such as current traffic control states (e.g., traffic light status).
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 5, 2023
    Assignee: UATC, LLC
    Inventors: Sergio Casas, Cole Christian Gulino, Shun Da Suo, Raquel Urtasun
  • Publication number: 20230229889
    Abstract: Systems and methods for generating motion forecast data for actors with respect to an autonomous vehicle and training a machine learned model for the same are disclosed. The computing system can include an object detection model and a graph neural network including a plurality of nodes and a plurality of edges. The computing system can be configured to input sensor data into the object detection model; receive object detection data describing the location of the plurality of the actors relative to the autonomous vehicle as an output of the object detection model; input the object detection data into the graph neural network; iteratively update a plurality of node states respectively associated with the plurality of nodes; and receive, as an output of the graph neural network, the motion forecast data with respect to the plurality of actors.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Raquel Urtasun, Renjie Liao, Sergio Casas, Cole Christian Gulino
  • Patent number: 11636307
    Abstract: Systems and methods for generating motion forecast data for actors with respect to an autonomous vehicle and training a machine learned model for the same are disclosed. The computing system can include an object detection model and a graph neural network including a plurality of nodes and a plurality of edges. The computing system can be configured to input sensor data into the object detection model; receive object detection data describing the location of the plurality of the actors relative to the autonomous vehicle as an output of the object detection model; input the object detection data into the graph neural network; iteratively update a plurality of node states respectively associated with the plurality of nodes; and receive, as an output of the graph neural network, the motion forecast data with respect to the plurality of actors.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: April 25, 2023
    Assignee: UATC, LLC
    Inventors: Raquel Urtasun, Renjie Liao, Sergio Casas, Cole Christian Gulino
  • Publication number: 20230022265
    Abstract: Systems and methods are provided for detecting objects of interest. A computing system can input sensor data to one or more first machine-learned models associated with detecting objects external to an autonomous vehicle. The computing system can obtain as an output of the first machine-learned models, data indicative of one or more detected objects. The computing system can determine data indicative of at least one uncertainty associated with the one or more detected objects and input the data indicative of the one or more detected objects and the data indicative of the at least one uncertainty to one or more second machine-learned models. The computing system can obtain as an output of the second machine-learned models, data indicative of at least one prediction associated with the one or more detected objects. The at least one prediction can be based at least in part on the detected objects and the uncertainty.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 26, 2023
    Inventors: Cole Christian Gulino, Alexander Rashid Ansari
  • Patent number: 11454975
    Abstract: Systems and methods are provided for detecting objects of interest. A computing system can input sensor data to one or more first machine-learned models associated with detecting objects external to an autonomous vehicle. The computing system can obtain as an output of the first machine-learned models, data indicative of one or more detected objects. The computing system can determine data indicative of at least one uncertainty associated with the one or more detected objects and input the data indicative of the one or more detected objects and the data indicative of the at least one uncertainty to one or more second machine-learned models. The computing system can obtain as an output of the second machine-learned models, data indicative of at least one prediction associated with the one or more detected objects. The at least one prediction can be based at least in part on the detected objects and the uncertainty.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: September 27, 2022
    Assignee: UATC, LLC
    Inventors: Cole Christian Gulino, Alexander Rashid Ansari
  • Publication number: 20220245950
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with object association and tracking are provided. Input data can be obtained. The input data can be indicative of a detected object within a surrounding environment of an autonomous vehicle and an initial object classification of the detected object at an initial time interval and object tracks at time intervals preceding the initial time interval. Association data can be generated based on the input data and a machine-learned model. The association data can indicate whether the detected object is associated with at least one of the object tracks. An object classification probability distribution can be determined based on the association data. The object classification probability distribution can indicate a probability that the detected object is associated with each respective object classification. The association data and the object classification probability distribution for the detected object can be outputted.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: Shivam Gautam, Brian C. Becker, Carlos Vallespi-Gonzalez, Cole Christian Gulino
  • Patent number: 11348339
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with object association and tracking are provided. Input data can be obtained. The input data can be indicative of a detected object within a surrounding environment of an autonomous vehicle and an initial object classification of the detected object at an initial time interval and object tracks at time intervals preceding the initial time interval. Association data can be generated based on the input data and a machine-learned model. The association data can indicate whether the detected object is associated with at least one of the object tracks. An object classification probability distribution can be determined based on the association data. The object classification probability distribution can indicate a probability that the detected object is associated with each respective object classification. The association data and the object classification probability distribution for the detected object can be outputted.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 31, 2022
    Assignee: UATC, LLC
    Inventors: Shivam Gautam, Brian C. Becker, Carlos Vallespi-Gonzalez, Cole Christian Gulino
  • Publication number: 20210272018
    Abstract: The present disclosure provides systems and methods for training probabilistic object motion prediction models using non-differentiable representations of prior knowledge. As one example, object motion prediction models can be used by autonomous vehicles to probabilistically predict the future location(s) of observed objects (e.g., other vehicles, bicyclists, pedestrians, etc.). For example, such models can output a probability distribution that provides a distribution of probabilities for the future location(s) of each object at one or more future times. Aspects of the present disclosure enable these models to be trained using non-differentiable prior knowledge about motion of objects within the autonomous vehicle's environment such as, for example, prior knowledge about lane or road geometry or topology and/or traffic information such as current traffic control states (e.g., traffic light status).
    Type: Application
    Filed: January 15, 2021
    Publication date: September 2, 2021
    Inventors: Sergio Casas, Cole Christian Gulino, Shun Da Suo, Raquel Urtasun
  • Publication number: 20210049378
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with object association and tracking are provided. Input data can be obtained. The input data can be indicative of a detected object within a surrounding environment of an autonomous vehicle and an initial object classification of the detected object at an initial time interval and object tracks at time intervals preceding the initial time interval. Association data can be generated based on the input data and a machine-learned model. The association data can indicate whether the detected object is associated with at least one of the object tracks. An object classification probability distribution can be determined based on the association data. The object classification probability distribution can indicate a probability that the detected object is associated with each respective object classification. The association data and the object classification probability distribution for the detected object can be outputted.
    Type: Application
    Filed: September 6, 2019
    Publication date: February 18, 2021
    Inventors: Shivam Gautam, Brian C. Becker, Carlos Vallespi-Gonzalez, Cole Christian Gulino
  • Publication number: 20210009163
    Abstract: Systems and methods for generating motion forecast data for actors with respect to an autonomous vehicle and training a machine learned model for the same are disclosed. The computing system can include an object detection model and a graph neural network including a plurality of nodes and a plurality of edges. The computing system can be configured to input sensor data into the object detection model; receive object detection data describing the location of the plurality of the actors relative to the autonomous vehicle as an output of the object detection model; input the object detection data into the graph neural network; iteratively update a plurality of node states respectively associated with the plurality of nodes; and receive, as an output of the graph neural network, the motion forecast data with respect to the plurality of actors.
    Type: Application
    Filed: March 12, 2020
    Publication date: January 14, 2021
    Inventors: Raquel Urtasun, Renjie Liao, Sergio Casas, Cole Christian Gulino
  • Publication number: 20200004259
    Abstract: Systems and methods are provided for detecting objects of interest. A computing system can input sensor data to one or more first machine-learned models associated with detecting objects external to an autonomous vehicle. The computing system can obtain as an output of the first machine-learned models, data indicative of one or more detected objects. The computing system can determine data indicative of at least one uncertainty associated with the one or more detected objects and input the data indicative of the one or more detected objects and the data indicative of the at least one uncertainty to one or more second machine-learned models. The computing system can obtain as an output of the second machine-learned models, data indicative of at least one prediction associated with the one or more detected objects. The at least one prediction can be based at least in part on the detected objects and the uncertainty.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 2, 2020
    Inventors: Cole Christian Gulino, Alexander Rashid Ansari