Patents by Inventor Collin A. Rich

Collin A. Rich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8399278
    Abstract: The integrated circuit/transducer device of the preferred embodiment includes a substrate, a complementary-metal-oxide-semiconductor (CMOS) circuit that is fabricated on the substrate, and a capacitive micromachined ultrasonic transducer (cMUT) element that is also fabricated on the substrate. The CMOS circuit and cMUT element are fabricated during the same foundry process and are connected. The cMUT includes a lower electrode, an upper electrode, a membrane structure that support the upper electrode, and a cavity between the upper electrode and lower electrode.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 19, 2013
    Assignee: Sonetics Ultrasound, Inc.
    Inventors: David F. Lemmerhirt, Collin A. Rich
  • Patent number: 8309428
    Abstract: The first integrated circuit/transducer device 36 of the handheld probe includes CMOS circuits 110 and cMUT elements 112. The cMUT elements 112 function to generate an ultrasonic beam, detect an ultrasonic echo, and output electrical signals, while the CMOS circuits 110 function to perform analog or digital operations on the electrical signals generated through operation of the cMUT elements 112. The manufacturing method for the first integrated circuit/transducer device 36 of the preferred embodiment includes the steps of depositing the lower electrode S102; depositing a sacrificial layer S104; depositing a dielectric layer S106; depositing the upper electrode S108; depositing a protective layer on the upper electrode S110; and removing the sacrificial layer S112. In the preferred embodiment, the manufacturing method also includes the step of depositing a sealant layer to seal a cavity between the lower electrode and the upper electrode S114.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 13, 2012
    Assignee: Sonetics Ultrasound, Inc.
    Inventors: David F. Lemmerhirt, Collin A. Rich
  • Patent number: 8303894
    Abstract: The fluidic system including a sheath pump that pumps sheath fluid from a sheath container into an interrogation zone, a waste pump that pumps waste fluid from the interrogation zone to a waste container, in which the flow rate of the sheath fluid is different from the flow rate of the waste fluid thereby drawing a sample fluid from a sample container into the interrogation zone, a detection system that provides a data set of input signals from the sample fluid, an analysis engine that recognizes aggregate particle events in the data set, and a controller that automatically adjusts the flow rate of the sample fluid into the interrogation zone based on the recognition of aggregate particle events, by controlling at least one of the flow rates of the sheath fluid and the waste fluid.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Patent number: 8283177
    Abstract: A method for cleaning a fluidic system of a flow cytometer having a sheath pump to pump sheath fluid towards an interrogation zone and a waste pump to pump the sheath fluid and a sample fluid as waste fluid from the interrogation zone, wherein the sheath pump and/or the waste pump draw sample fluid into the flow cytometer through a drawtube towards the interrogation zone. The method includes controlling the sheath pump and the waste pump to cooperatively flush a fluid out through the drawtube, thereby cleaning the fluidic system of the flow cytometer.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: October 9, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Jack T. Ball, Aaron Kehrer, Nathaniel C. Bair, Collin A. Rich
  • Patent number: 8262990
    Abstract: The fluidic system with an unclogging feature of the preferred embodiment includes a flow channel, a sheath pump to pump sheath fluid from a sheath container into an interrogation zone, and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The pump and controller cooperate to propagate a pulsation through the flow channel from the pump if the flow channel is clogged. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 11, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Nathaniel C. Bair, Collin A. Rich
  • Patent number: 8229707
    Abstract: A method of extracting and analyzing a data set from a flow cytometer system of the preferred embodiment comprises the steps of (1) running a sample and saving all collected raw data, (2) viewing raw (or “unmodified”) data, (3) modifying the raw data (e.g., scaling and/or culling the raw data), (4) reviewing and saving the modified data, and (5) exporting the saved data. Once the sample has been run and all collected data have been saved, the user can repeat the steps of modifying the raw data, saving the modified data, and exporting the saved data as many times as necessary and/or desirable.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: July 24, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: David Olson, Collin A. Rich, Clement James Goebel, III
  • Patent number: 8229684
    Abstract: The detection system of the first preferred embodiment includes a detector, having a wide dynamic range, that receives photonic inputs from an interrogation zone and produces an analog signal; and an analog-to-digital converter (ADC), having a high bit resolution, that is coupled to the detector and converts an analog signal to a digital signal. The digital signal includes an initial data set of the full dynamic range of the input signals from the flow cytometer sample. The method of extracting and analyzing data from a flow cytometer system of the first preferred embodiment preferably includes the steps of: collecting a full dynamic range of input signals from a flow cytometer sample; recognizing and annotating aggregate particle events; and storing an initial data set and an annotated data set of the full dynamic range of the input signals from the flow cytometer sample.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 24, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Clement James Goebel, Collin A. Rich
  • Patent number: 8187888
    Abstract: The fluidic system of the preferred embodiment includes a sheath pump to pump sheath fluid from a sheath container into an interrogation zone and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 29, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Patent number: 8149402
    Abstract: The preferred embodiments of the invention is an optical system for a flow cytometer including a flow channel with an interrogation zone, and an illumination source that impinges the flow channel in the interrogation zone from a particular direction. The optical system preferably includes a lens system and a detection system. The lens system preferably includes multiple lens surfaces arranged around the flow channel and adapted to collect and collimate light from the interrogation zone. The detection system preferably includes multiple detectors adapted to detect light from the lens system. Each detector preferably includes a local filter that independently filters for specific wavelengths. Thus, the user may easily swap the filters in any order to achieve the same detection parameters.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: April 3, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Collin A. Rich, Richard L. Fisher, Nathaniel C. Bair
  • Publication number: 20120004859
    Abstract: A method of extracting and analyzing a data set from a flow cytometer system of the preferred embodiment comprises the steps of (1) running a sample and saving all collected raw data, (2) viewing raw (or “unmodified”) data, (3) modifying the raw data (e.g., scaling and/or culling the raw data), (4) reviewing and saving the modified data, and (5) exporting the saved data. Once the sample has been run and all collected data have been saved, the user can repeat the steps of modifying the raw data, saving the modified data, and exporting the saved data as many times as necessary and/or desirable.
    Type: Application
    Filed: July 4, 2011
    Publication date: January 5, 2012
    Inventors: David Olson, Collin A. Rich, Clement James Goebel
  • Publication number: 20110306031
    Abstract: The fluidic system of the preferred embodiment includes a sheath pump to pump sheath fluid from a sheath container into an interrogation zone and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Application
    Filed: July 8, 2011
    Publication date: December 15, 2011
    Inventor: Collin A. Rich
  • Patent number: 8077310
    Abstract: The invention includes a system and a method for capturing multi source excitations from a single location on a flow channel. The system preferably includes a light subsystem that emits light onto a single location on a flow channel, a detector subsystem to detect light emitted from the single location on the flow channel, and a processor to separate the detected light. The method preferably includes emitting light onto a single location on a flow channel, detecting light emitted from the single location on the flow channel, and separating the detected light.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 13, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventors: David C. Olson, Collin A. Rich
  • Patent number: 8031340
    Abstract: An optical system for a flow cytometer having a flow channel with an interrogation zone and an illumination source that impinges the flow channel in the interrogation zone includes a lens system and a detection system. The lens system preferably includes at least two lens surfaces located on opposite sides of the flow channel and configured to collect and collimate light from the interrogation zone. The detection system, configured to detect light from the lens system, preferably includes first and second detectors, a first filter that passes a first wavelength of light and reflects a second wavelength of light, and a second filter that reflects the first wavelength of light and passes the second wavelength of light, wherein the first and second filters are aligned such that light reflected from the first filter passes into the second detector and light reflected from the second filter passes into the first detector.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 4, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventors: Collin A. Rich, Nathaniel C. Bair
  • Patent number: 8017402
    Abstract: The fluidic system of the preferred embodiment includes a sheath pump to pump sheath fluid from a sheath container into an interrogation zone and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 13, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Patent number: 8014865
    Abstract: A method of monitoring physiological parameters for diagnosis and treatment of congestive heart failure in a patient. The method includes implanting at least one sensing device in a cavity of the patient's cardiovascular system, preferably so that the sensing device passes through and is anchored to a septum of the heart and, to minimize the risk of thrombogenicity, a larger portion of the sensing device is located in the right side of the heart and a smaller portion of the sensing device is located in the left side of the heart. Electromagnetic telecommunication and/or wireless powering of the sensing device is performed with an external readout device. The method can be used to perform effective monitoring, management, and tailoring of treatments for patients suffering from congestive heart failure, as well as many other diseases.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: September 6, 2011
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Nader Najafi, Collin A. Rich
  • Publication number: 20110204259
    Abstract: A method for detecting fluorochromes in a flow cytometer, including: receiving a sample including particles each tagged with at least one of a first fluorochrome and a second fluorochrome, in which the first and second fluorochromes having distinct spillover coefficients; detecting the particles, including detecting the first and second fluorochromes with a first detector and a second detector; forming a data set for detected particles based on the detection of the first and second fluorochromes; characterizing a detected spillover coefficient for each detected fluorochrome from the data set; and sorting the detected particles into predicted fluorochrome populations based on the detected spillover coefficients.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Inventors: Clare E. Rogers, Jack T. Ball, Collin A. Rich
  • Patent number: 8004674
    Abstract: A system for a flow cytometer that collects data for a sample prepared with a plurality of fluorochromes that includes a fixed gain detection system that collects data for a plurality of fluorescence channels, fluorochrome compensation factors for a plurality of fluorochromes types, and a computer system that has an interface that gathers fluorochrome information of the sample and an analysis program that compensates for spectral spillover in the collected data. The fixed gain detection system preferably has a wide dynamic range. A fluorochrome compensation factor preferably remains constant for a fixed gain detection system. The analysis program preferably uses the fluorochrome compensation factors to compensate for spectral spillover.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: August 23, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventors: Jack T. Ball, Collin A. Rich, Clare E. Rogers
  • Patent number: 7996188
    Abstract: A method of extracting and analyzing a data set from a flow cytometer system of the preferred embodiment comprises the steps of (1) running a sample and saving all collected raw data, (2) viewing raw (or “unmodified”) data, (3) modifying the raw data (e.g., scaling and/or culling the raw data), (4) reviewing and saving the modified data, and (5) exporting the saved data. Once the sample has been run and all collected data have been saved, the user can repeat the steps of modifying the raw data, saving the modified data, and exporting the saved data as many times as necessary and/or desirable.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: August 9, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventors: David Olson, Collin A. Rich, Clement James Goebel, III
  • Patent number: 7981661
    Abstract: The fluidic system of the preferred embodiment includes a sheath pump to pump sheath fluid from a sheath container into an interrogation zone, a sheath volume measurement device to measure the fluid in the sheath container, a waste pump to pump the sheath fluid and a sample fluid as waste fluid from the interrogation zone into a waste container, and a waste volume measurement device to measure the fluid in the waste container. The system also includes a controller connected to the sheath pump, the waste pump, and the volume measurement devices. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone, which functions to provide a location for the fluidic system and an optical system of the flow cytometer to cooperatively facilitate the analysis of the sample fluid.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: July 19, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Publication number: 20110151608
    Abstract: The integrated circuit/transducer device of the preferred embodiment includes a substrate, a complementary-metal-oxide-semiconductor (CMOS) circuit that is fabricated on the substrate, and a capacitive micromachined ultrasonic transducer (cMUT) element that is also fabricated on the substrate. The CMOS circuit and cMUT element are fabricated during the same foundry process and are connected. The cMUT includes a lower electrode, an upper electrode, a membrane structure that support the upper electrode, and a cavity between the upper electrode and lower electrode.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 23, 2011
    Inventors: David F. Lemmerhirt, Collin A. Rich