Patents by Inventor Corey T. Harbold

Corey T. Harbold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230240722
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Application
    Filed: September 12, 2022
    Publication date: August 3, 2023
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Publication number: 20190133645
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Application
    Filed: June 6, 2018
    Publication date: May 9, 2019
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 9579124
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: February 28, 2017
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Publication number: 20160296340
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 13, 2016
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8753398
    Abstract: A method of inserting an expandable intervertebral implant between vertebrae of a human spine without overdistraction of the vertebrae is described. The method includes removing a portion of a disc between the vertebrae to create a disc space between the vertebrae. The unexpanded intervertebral implant may be positioned in the disc space. The intervertebral implant may be expanded to increase a height of the intervertebral implant, thereby increasing a separation distance between the vertebrae or a separation distance between an upper body and a lower body of the intervertebral implant. The increased height of the intervertebral implant may be maintained at substantially the expanded height, wherein the maximum separation distance between the two vertebrae during the procedure is the separation distance created during expansion of the intervertebral implant.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: June 17, 2014
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8647386
    Abstract: An intervertebral implant system for a human spine including a first body having a first external surface to be disposed adjacent a first vertebrae during use and a first internal surface opposite the first external surface, a second body having a second external surface to be disposed adjacent a second vertebrae during use and a second internal surface opposite the second external surface, an elongated insertion instrument releasable coupleable to the first or second body during use, and a spacer linearly advanced between the first internal surface of the first body and the first internal surface of the second body during use. The elongated insertion instrument guides at least a portion of the linear advancement of the spacer, and wherein the linear advancement of the spacer results in expansion of the intervertebral implant such that the first external surface and the second external surface move away from one another to expand a height of the implant.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 11, 2014
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8603168
    Abstract: A stabilization system for a human spine is provided comprising at least one dynamic interbody device and at least one dynamic posterior stabilization system. In some embodiments the stabilization system comprises a pair of dynamic interbody devices and a pair of dynamic posterior stabilization systems. In some embodiments, a bridge may couple a dynamic interbody device to a dynamic posterior stabilization system.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: December 10, 2013
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson, Erik J. Wagner
  • Publication number: 20120310349
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Application
    Filed: April 2, 2012
    Publication date: December 6, 2012
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8257440
    Abstract: A method of inserting an intervertebral implant between vertebrae in a human spine includes positioning the intervertebral implant in a closed configuration between the vertebrae. After positioning the intervertebral implant, the intervertebral implant is activated to increase a height of the intervertebral implant. After activation, at least a portion of the increased height of the intervertebral implant is maintained.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 4, 2012
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8172903
    Abstract: An expandable intervertebral implant for insertion between vertebrae of a human spine is described. The expandable intervertebral implant includes an upper body that engages a first vertebra of the human spine, a lower body that engages a second vertebra of the human spine, an insert, and a spacer. The insert may be positioned between an inferior surface of the upper body and a superior surface of the lower body. The insert may be engaged to increase a separation distance between the lower body and the upper body. A spacer may be inserted between the upper body and the lower body to maintain the increased separation distance between the upper body and the lower body after expansion of the intervertebral implant in the human spine.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: May 8, 2012
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8147550
    Abstract: An articulating expandable intervertebral implant is described for insertion between vertebrae of a human spine. The articulating expandable intervertebral implant includes an upper body that engages a first vertebra, a lower body that engages a second vertebra, and an insert. The inferior surface of the upper body may include a concave portion. The superior surface of the insert may include a convex portion. The insert may be positioned between the superior surface of the lower body and the concave portion of the inferior surface of the upper body. In some embodiments, an expansion member may engage the insert to increase a height of the intervertebral implant and/or allow or increase articulation of the upper body with respect to the insert. The insert may include one or more features designed to limit articulation of the upper body with respect to the insert.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: April 3, 2012
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8123810
    Abstract: An expandable intervertebral implant is described for insertion between vertebrae of a human spine. The intervertebral implant includes an upper body that engages a first vertebra of the human spine, a lower body that engages a second vertebra of the human spine, an insert, and an expansion member. The expansion member may include a first angled portion and a second angled portion. The expansion member may be advanced such that a first angled portion of the expansion member engages an angled portion of the insert to increase a separation distance between the upper body and the lower body of the intervertebral implant. An advancing element may engage a second angled portion of the expansion member such that a direction of advancement of the advancing element is different than the direction of advancement of the expansion member.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 28, 2012
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8118871
    Abstract: An articulating expandable intervertebral implant is described. The articulating expandable intervertebral implant includes an upper body that engages a first vertebra of the human spine, a lower body that engages a second vertebra of the human spine, an insert, and an advancing element. In some embodiments, the upper body includes an upper portion and a lower portion that are configured to articulate with respect to each other. The advancing element may be configured to engage the insert such that advancement of the advancing element causes the insert to at least partially rotate between the upper body and the lower body. Rotation of the insert may cause the insert to interact with at least a portion of the upper body or the lower body to increase a height of the intervertebral implant and/or to allow articulation of the intervertebral implant after insertion of the intervertebral implant between the vertebrae.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 21, 2012
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8118870
    Abstract: An expandable articulating intervertebral implant is described for insertion between vertebrae of a human spine. The expandable intervertebral implant includes an upper body that engages a first vertebra of the human spine, a lower body that engages a second vertebra of the human spine, and an insert. The upper body may include an upper portion and a lower portion. The insert may be positioned between an inferior surface of the lower portion of the upper body and a superior surface of the lower body. The insert may be translated or rotated to increase a separation distance between the lower body and the upper body. A spacer may be inserted between the upper body and the lower body to maintain at least a portion of the increased separation distance between the upper body and the lower body after expansion of the intervertebral implant in the human spine.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 21, 2012
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 8118869
    Abstract: A dynamic interbody device for a human spine is provided to stabilize a human spine. In some embodiments, the dynamic interbody device includes a first member and a second member. In some embodiments, dynamic interbody device includes a first member, a second member and a third member. In some embodiments, the dynamic interbody device may include a bridge. The bridge may be used to couple the dynamic interbody device to a posterior stabilization system. In some embodiments, two dynamic interbody devices may be placed in a disc space between vertebrae.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: February 21, 2012
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson, Erik J. Wagner
  • Patent number: 8052723
    Abstract: A dynamic posterior stabilization system is provided to stabilize a human spine. In some embodiments, the dynamic posterior stabilization system includes a first bone fastener, a second bone fastener, and an elongated member coupled to the first bone fastener and the second bone fastener. The longitudinal position of the elongated member relative to the first bone fastener may be fixed. The longitudinal position of the second bone fastener relative to the elongated member may vary so that the dynamic posterior stabilization system can accommodate flexion/extension and/or lateral bending. The dynamic posterior stabilization system may also be able to accommodate axial rotation. Bias members may be coupled to the elongated member. The bias members may allow the dynamic posterior stabilization system to mimic the resistance behavior of a normal functional spinal unit.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: November 8, 2011
    Assignee: Flexuspine Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson, Erik J. Wagner
  • Patent number: 7909869
    Abstract: An artificial functional spinal unit is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, banana-shaped, kidney-shaped, or other similar shapes.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: March 22, 2011
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Publication number: 20100331985
    Abstract: An artificial functional spinal unit including an expandable intervertebral implant that can be inserted via a posterior surgical approach and used with one or more facet replacement devices to provide an anatomically correct range of motion is described. Lordotic and non-lordotic expandable, articulating implants and cages are described, along with embodiments of facet replacement devices and instruments for insertion. Methods of insertion are also described.
    Type: Application
    Filed: July 22, 2010
    Publication date: December 30, 2010
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson
  • Patent number: 7799082
    Abstract: A stabilization system for a human spine is provided comprising at least two dynamic interbody device and at least one dynamic posterior stabilization system. In some embodiments the stabilization system comprises a pair of dynamic interbody devices and a pair of dynamic posterior stabilization systems. The dynamic interbody devices may work in conjunction with the dynamic posterior stabilization systems to allow for movement of vertebrae coupled to the stabilization system. The dynamic posterior stabilization systems may provide resistance to movement that mimics the resistance provided by a normal functional spinal unit. In some embodiments, a bridge may couple a dynamic interbody device to a dynamic posterior stabilization system.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 21, 2010
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson, Erik J. Wagner
  • Patent number: 7794480
    Abstract: A stabilization system for a human spine is provided comprising at least one dynamic interbody device and at least one dynamic posterior stabilization system. In some embodiments the stabilization system comprises a pair of dynamic interbody devices and a pair of dynamic posterior stabilization systems. In some embodiments, a bridge may couple a dynamic interbody device to a dynamic posterior stabilization system. In some embodiments, an elongated member of the dynamic posterior stabilization system may be curved.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 14, 2010
    Assignee: Flexuspine, Inc.
    Inventors: Charles R. Gordon, Corey T. Harbold, Heather S. Hanson, Erik J. Wagner