Patents by Inventor Correy Robert Ustanik

Correy Robert Ustanik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384534
    Abstract: The present disclosure relates to laser treatment of a ferrule to secure an optical fiber within a ferrule bore. In particular, the laser treatment modifies the physical structure of the ferrule to aid in securing the optical fiber within the ferrule bore.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 30, 2023
    Inventors: Xinghua Li, Correy Robert Ustanik, Lei Yuan
  • Patent number: 11249032
    Abstract: Methods for detecting defects on the surface of a sheet of material include collimating a beam of light and intersecting the collimated beam of light with a beam splitter. The beam splitter directs a first portion of the intersected beam of collimated light to illuminate a first surface of the sheet, wherein a first portion of the light illuminating the first surface is reflected and a second portion of the illuminating light is scattered by a defect. The reflected and scattered light is received with a first lens element that directs the reflected and scattered light to an inverse aperture. The reflected light is blocked by the inverse aperture and the scattered light is transmitted by the inverse aperture. The scattered light transmitted by the inverse aperture is directed with a second lens element to an imaging device.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: February 15, 2022
    Assignee: Corning Incorporated
    Inventors: Jeffrey Allen Knowles, Correy Robert Ustanik, Jiaxiang Zhang
  • Publication number: 20200333258
    Abstract: Methods for detecting defects on the surface of a sheet of material include collimating a beam of light and intersecting the collimated beam of light with a beam splitter. The beam splitter directs a first portion of the intersected beam of collimated light to illuminate a first surface of the sheet, wherein a first portion of the light illuminating the first surface is reflected and a second portion of the illuminating light is scattered by a defect. The reflected and scattered light is received with a first lens element that directs the reflected and scattered light to an inverse aperture. The reflected light is blocked by the inverse aperture and the scattered light is transmitted by the inverse aperture. The scattered light transmitted by the inverse aperture is directed with a second lens element to an imaging device.
    Type: Application
    Filed: November 9, 2018
    Publication date: October 22, 2020
    Inventors: Jeffrey Allen Knowles, Correy Robert Ustanik, Jiaxiang Zhang
  • Patent number: 10739394
    Abstract: Disclosed herein are apparatuses and methods for measuring electrostatic charge on a surface of a substrate. The apparatuses comprise a substrate mounting platform, a substrate contacting component, and at least one voltage sensor, wherein the apparatus is programmed to independently control the rotational and translation velocity of a roller and/or to measure a voltage of the substrate at multiple points to produce a two-dimensional map of voltage for at least a portion of the substrate.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 11, 2020
    Assignee: Corning Incorporated
    Inventors: Gabriel Pierce Agnello, Peter Knowles, Correy Robert Ustanik
  • Patent number: 10732126
    Abstract: A method of inspecting defects on a transparent substrate may include: selecting a gradient of an illumination optical system so that light incident on the transparent substrate has a first angle; selecting a gradient of a detection optical system so that an optical axis of the detection optical system located over the transparent substrate has a second angle, which is equal to or less than the first angle; adjusting a position of at least one of the illumination optical system, the transparent substrate, and the detection optical system so that a field-of-view of the detection optical system covers a first region where the light meets a first surface of the transparent substrate and does not cover a second region where light meets a second surface of the transparent substrate, the second surface being opposite to the first surface; illuminating the transparent substrate; and detecting light scattered from the transparent substrate.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: August 4, 2020
    Assignee: Corning Incorporated
    Inventors: Chong Pyung An, Uta-Barbara Goers, En Hong, Sung-chan Hwang, Ji Hwa Jung, Tae-ho Keem, Philip Robert LeBlanc, Hyeong-cheol Lee, Michal Mlejnek, Johannes Moll, Rajeshkannan Palanisamy, Sung-jong Pyo, Amanda Kathryn Thomas, Correy Robert Ustanik
  • Patent number: 10677739
    Abstract: A method of inspecting defects of a transparent substrate may include: illuminating a transparent substrate; calculating an incidence angle range of light so that a first region where the light meets a first surface of the transparent substrate and a second region where light meets a second surface being opposite the first surface of the transparent substrate do not overlap each other; adjusting an incidence angle according to the incidence angle range; adjusting a position of a first detector so that a first field-of-view of the first detector covers the first region and does not cover the second region; adjusting a position of a second detector so that a second field-of-view of the second detector covers the second region and does not cover the first region; and obtaining a first image of the first region and a second image of the second region from the first and second detector, respectively.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 9, 2020
    Assignee: Corning Incorporated
    Inventors: Uta-Barbara Goers, En Hong, Sung-chan Hwang, Ji Hwa Jung, Tae-ho Keem, Philip Robert LeBlanc, Rajeshkannan Palanisamy, Sung-jong Pyo, Correy Robert Ustanik
  • Patent number: 10613007
    Abstract: Apparatus and method for testing a sheet of brittle material comprising the steps of measuring one or more edge features of a sheet of brittle material, imparting a bend to the sheet of brittle material and producing relative motion between the sheet and the bend such that the bend traverses the sheet. A stress can be induced in the sheet as a function of the relative motion and imparted bend, wherein the induced stress corresponds to a predetermined strength value, and the measured one or more edge features can be correlated with the strength value.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Gabriel Pierce Agnello, Chong Pyung An, William Kenneth Denson, Peter Knowles, David Bruce Moorehouse, Denwood Falconer Ross, III, Correy Robert Ustanik, Siva Venkatachalam
  • Publication number: 20190277774
    Abstract: A method of inspecting defects on a transparent substrate may include: selecting a gradient of an illumination optical system so that light incident on the transparent substrate has a first angle; selecting a gradient of a detection optical system so that an optical axis of the detection optical system located over the transparent substrate has a second angle, which is equal to or less than the first angle; adjusting a position of at least one of the illumination optical system, the transparent substrate, and the detection optical system so that a field-of-view of the detection optical system covers a first region where the light meets a first surface of the transparent substrate and does not cover a second region where light meets a second surface of the transparent substrate, the second surface being opposite to the first surface; illuminating the transparent substrate; and detecting light scattered from the transparent substrate.
    Type: Application
    Filed: October 31, 2017
    Publication date: September 12, 2019
    Inventors: Chong Pyung An, Uta-Barbara Goers, En Hong, Sung-chan Hwang, Ji Hwa Jung, Tae-ho Keem, Philip Robert LeBlanc, Hyeong-cheol Lee, Michal Mlejnek, Johannes Moll, Rajeshkannan Palanisamy, Sung-jong Pyo, Amanda Kathryn Thomas, Correy Robert Ustanik
  • Publication number: 20190257765
    Abstract: A method of inspecting defects of a transparent substrate may include: illuminating a transparent substrate; calculating an incidence angle range of light so that a first region where the light meets a first surface of the transparent substrate and a second region where light meets a second surface being opposite the first surface of the transparent substrate do not overlap each other; adjusting an incidence angle according to the incidence angle range; adjusting a position of a first detector so that a first field-of-view of the first detector covers the first region and does not cover the second region; adjusting a position of a second detector so that a second field-of-view of the second detector covers the second region and does not cover the first region; and obtaining a first image of the first region and a second image of the second region from the first and second detector, respectively.
    Type: Application
    Filed: October 31, 2017
    Publication date: August 22, 2019
    Inventors: Uta-Barbara Goers, En Hong, Sung-chan Hwang, Ji Hwa Jung, Tae-ho Keem, Philip Robert LeBlanc, Rajeshkannan Palanisamy, Sung-jong Pyo, Correy Robert Ustanik
  • Publication number: 20180073967
    Abstract: Apparatus and method for testing a sheet of brittle material comprising the steps of measuring one or more edge features of a sheet of brittle material, imparting a bend to the sheet of brittle material and producing relative motion between the sheet and the bend such that the bend traverses the sheet. A stress can be induced in the sheet as a function of the relative motion and imparted bend, wherein the induced stress corresponds to a predetermined strength value, and the measured one or more edge features can be correlated with the strength value.
    Type: Application
    Filed: March 10, 2016
    Publication date: March 15, 2018
    Inventors: Gabriel Pierce Agnello, Chong Pyung An, William Kenneth Denson, Peter Knowles, David Bruce Moorehouse, Denwood Falconer Ross, Correy Robert Ustanik, Siva Venkatachalam
  • Patent number: 9488597
    Abstract: A method for determining surface quality for a glass surface is provided. The method includes depositing a pattern of drops over the glass surface using a drop dispensing apparatus. Adjacent drops have a predetermined deposit size and a predetermined deposit spacing. Drop information for the pattern of drops is generated using a vision apparatus. An out-of-parameter condition is detected by analyzing the drop information and an indication of the out-of-parameter condition is provided.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 8, 2016
    Assignee: Corning Incorporated
    Inventors: En Hong, Philip Robert LeBlanc, Correy Robert Ustanik
  • Patent number: 9031813
    Abstract: Methods and apparatus (100,200) for estimating the gravity-free shape of a flexible object (140) such as a thin sheet of glass are provided. In certain embodiments, an estimate of the gravity-free shape is produced using a bed-of-nails (BON) gauge (100) and then the shape is measured at a higher spatial resolution using a second gauge (200), with the theoretical sag between the pins (110) of the BON gauge being subtracted from the shape measured by the second gauge. In other embodiments, shape measurements are performed on both sides of the object (140) and used to estimate the reliability of the gravity-free shape estimate. In further embodiments, the bed-of-nails gauge (100) uses a least squares minimization procedure in adjusting the heights of the pins (110).
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 12, 2015
    Assignee: Corning Incorporated
    Inventors: John Steele Abbott, III, Daniel R Harvey, Correy Robert Ustanik
  • Patent number: 8904822
    Abstract: A thickness of at least one preselected portion of a substrate, such as glass substrate for example, is controlled. A laser beam is directed to the at least one preselected portion of the substrate in a viscous state, thereby increasing a temperature and reducing a viscosity of the at least one preselected portion of the substrate in a viscous state sufficiently to cause the at least one preselected portion of the glass substrate to attain a desired thickness. The laser beam after it is generated can be directed to a reflecting surface from which the laser beam is reflected to the at least one preselected portion of the substrate in the viscous state. The substrate can comprise a glass ribbon produced in a downdraw glass forming process for example, and the laser beam can be directed onto a plurality of preselected portions of the glass ribbon.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Corning Incorporated
    Inventors: Philip Robert LeBlanc, Correy Robert Ustanik
  • Publication number: 20140123703
    Abstract: A thickness of at least one preselected portion of a substrate, such as glass substrate for example, is controlled. A laser beam is directed to the at least one preselected portion of the substrate in a viscous state, thereby increasing a temperature and reducing a viscosity of the at least one preselected portion of the substrate in a viscous state sufficiently to cause the at least one preselected portion of the glass substrate to attain a desired thickness. The laser beam after it is generated can be directed to a reflecting surface from which the laser beam is reflected to the at least one preselected portion of the substrate in the viscous state. The substrate can comprise a glass ribbon produced in a downdraw glass forming process for example, and the laser beam can be directed onto a plurality of preselected portions of the glass ribbon.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 8, 2014
    Inventors: Philip Robert LeBlanc, Correy Robert Ustanik
  • Publication number: 20130135459
    Abstract: A method for determining surface quality for a glass surface is provided. The method includes depositing a pattern of drops over the glass surface using a drop dispensing apparatus. Adjacent drops have a predetermined deposit size and a predetermined deposit spacing. Drop information for the pattern of drops is generated using a vision apparatus. An out-of-parameter condition is detected by analyzing the drop information and an indication of the out-of-parameter condition is provided.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: En Hong, Philip Robert LeBlanc, Correy Robert Ustanik
  • Publication number: 20120053891
    Abstract: Methods and apparatus (100,200) for estimating the gravity-free shape of a flexible object (140) such as a thin sheet of glass are provided. In certain embodiments, an estimate of the gravity-free shape is produced using a bed-of-nails (BON) gauge (100) and then the shape is measured at a higher spatial resolution using a second gauge (200), with the theoretical sag between the pins (110) of the BON gauge being subtracted from the shape measured by the second gauge. In other embodiments, shape measurements are performed on both sides of the object (140) and used to estimate the reliability of the gravity-free shape estimate. In further embodiments, the bed-of-nails gauge (100) uses a least squares minimization procedure in adjusting the heights of the pins (110).
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Inventors: John Steele Abbott, III, Daniel R. Harvey, Correy Robert Ustanik
  • Patent number: 7898670
    Abstract: A distortion measurement and inspection system is presented. In one embodiment, a vision system is implemented. The vision system performs dual focal plane imaging where simultaneous imaging of two focal planes is simultaneously performed on a sample substrate and a reference substrate to determine distortion. In addition, a highly reflective background is implemented to provide for more resolution during distortion measurement.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 1, 2011
    Assignee: Corning Incorporated
    Inventors: David Berg, Jacques Gollier, Douglas S Goodman, Correy Robert Ustanik
  • Patent number: 7762119
    Abstract: A method of calibrating a measurement an inspection system used in the LCD industry is presented. An assembly is created including two substrates coupled by a transducer. Two fixtures also adhere to the substrates and are connected to an interferometer. An inscription is created by marking at least one of the substrates using a reference point on a support table of the measurement and inspection system as a reference. The transducer is then operated to simulate an LCD glass process such as a thermal process or a glass cutting process. Operating the transducer also generates signals that are measured by the interferometer and represent a first distortion measurement. The inscription is then compared to reference mark to determine a second distortion measurement. A comparison of the first distortion measurement and the second distortion measurement are then used to calibrate the measurement and inspection device.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 27, 2010
    Assignee: Corning Incorporated
    Inventor: Correy Robert Ustanik
  • Publication number: 20100119808
    Abstract: In a method of making subsurface marks in glass, a beam of radiation is applied to the glass, the radiation having a wavelength that is ?400 nm. The beam is applied using marking parameters of a marking device (e.g., a laser) effective to change a density and a resulting index of refraction of the glass to form subsurface marks having a size not greater than 50 ?m without forming microcracks in the glass and without marking the surface of the glass. Another aspect is the glass having the subsurface marks disposed in a range of 20 to 200 microns below an outer surface of the glass.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Inventors: Xinghua Li, Correy Robert Ustanik
  • Patent number: 7567344
    Abstract: An apparatus and method for detecting defects in a transparent substrate by simultaneously using a combination of bright field and dark field light sources for illuminating the substrate. The apparatus is capable of detecting both inclusions and surface defects simultaneously while the substrate is in motion, simplifying the characterization of substrates in a manufacturing setting.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: July 28, 2009
    Assignee: Corning Incorporated
    Inventors: Philip Robert LeBlanc, Vitor Marino Schneider, Correy Robert Ustanik