Patents by Inventor Cristina TRINGALI

Cristina TRINGALI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021718
    Abstract: An HEMT includes a semiconductor body, which includes a semiconductor heterostructure, and a conductive gate region. The gate region includes: a contact region, which is made of a first metal material and contacts the semiconductor body to form a Schottky junction; a barrier region, which is made of a second metal material and is set on the contact region; and a top region, which extends on the barrier region and is made of a third metal material, which has a resistivity lower than the resistivity of the first metal material. The HEMT moreover comprises a dielectric region, which includes at least one front dielectric subregion, which extends over the contact region, delimiting a front opening that gives out onto the contact region; and wherein the barrier region extends into the front opening and over at least part of the front dielectric subregion.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Ferdinando IUCOLANO, Cristina TRINGALI
  • Patent number: 11854809
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: December 26, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Edoardo Zanetti, Simone Rascuna', Mario Giuseppe Saggio, Alfio Guarnera, Leonardo Fragapane, Cristina Tringali
  • Patent number: 11799025
    Abstract: An HEMT includes a semiconductor body, which includes a semiconductor heterostructure, and a conductive gate region. The gate region includes: a contact region, which is made of a first metal material and contacts the semiconductor body to form a Schottky junction; a barrier region, which is made of a second metal material and is set on the contact region; and a top region, which extends on the barrier region and is made of a third metal material, which has a resistivity lower than the resistivity of the first metal material. The HEMT moreover comprises a dielectric region, which includes at least one front dielectric subregion, which extends over the contact region, delimiting a front opening that gives out onto the contact region; and wherein the barrier region extends into the front opening and over at least part of the front dielectric subregion.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: October 24, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Ferdinando Iucolano, Cristina Tringali
  • Publication number: 20230099610
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Edoardo ZANETTI, Simone RASCUNA', Mario Giuseppe SAGGIO, Alfio GUARNERA, Leonardo FRAGAPANE, Cristina TRINGALI
  • Patent number: 11545362
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 3, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Edoardo Zanetti, Simone Rascuna', Mario Giuseppe Saggio, Alfio Guarnera, Leonardo Fragapane, Cristina Tringali
  • Publication number: 20220199846
    Abstract: A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
    Type: Application
    Filed: February 3, 2022
    Publication date: June 23, 2022
    Inventors: Cosimo Gerardi, Cristina Tringali, Sebastiano Ravesi, Marina Foti, NoemiGraziana Sparta', Corrado Accardi, Stella Loverso
  • Patent number: 11257975
    Abstract: A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: February 22, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Cosimo Gerardi, Cristina Tringali, Sebastiano Ravesi, Marina Foti, NoemiGraziana Sparta', Corrado Accardi, Stella Loverso
  • Publication number: 20210249268
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Edoardo ZANETTI, Simone RASCUNA', Mario Giuseppe SAGGIO, Alfio GUARNERA, Leonardo FRAGAPANE, Cristina TRINGALI
  • Patent number: 11018008
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 25, 2021
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Edoardo Zanetti, Simone Rascuná, Mario Giuseppe Saggio, Alfio Guarnera, Leonardo Fragapane, Cristina Tringali
  • Publication number: 20210125834
    Abstract: A method for manufacturing a HEMT device includes forming, on a heterostructure, a dielectric layer, forming a through opening through the dielectric layer, and forming a gate electrode in the through opening. Forming the gate electrode includes forming a sacrificial structure, depositing by evaporation a first gate metal layer layer, carrying out a lift-off of the sacrificial structure, depositing a second gate metal layer by sputtering, and depositing a third gate metal layer. The second gate metal layer layer forms a barrier against the diffusion of metal atoms towards the heterostructure.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Ferdinando IUCOLANO, Cristina TRINGALI
  • Publication number: 20200194579
    Abstract: An HEMT includes a semiconductor body, which includes a semiconductor heterostructure, and a conductive gate region. The gate region includes: a contact region, which is made of a first metal material and contacts the semiconductor body to form a Schottky junction; a barrier region, which is made of a second metal material and is set on the contact region; and a top region, which extends on the barrier region and is made of a third metal material, which has a resistivity lower than the resistivity of the first metal material. The HEMT moreover comprises a dielectric region, which includes at least one front dielectric subregion, which extends over the contact region, delimiting a front opening that gives out onto the contact region; and wherein the barrier region extends into the front opening and over at least part of the front dielectric subregion.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 18, 2020
    Inventors: Ferdinando IUCOLANO, Cristina TRINGALI
  • Publication number: 20200168718
    Abstract: A method for manufacturing an ohmic contact for a HEMT device, comprising the steps of: forming a photoresist layer, on a semiconductor body comprising a heterostructure; forming, in the photoresist layer, an opening, through which a surface region of the semiconductor body is exposed at said heterostructure; etching the surface region of the semiconductor body using the photoresist layer as etching mask to form a trench in the heterostructure; depositing one or more metal layers in said trench and on the photoresist layer; and carrying out a process of lift-off of the photoresist layer.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Ferdinando IUCOLANO, Cristina TRINGALI
  • Publication number: 20190172715
    Abstract: A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 6, 2019
    Inventors: Edoardo ZANETTI, Simone RASCUNÁ, Mario Giuseppe SAGGIO, Alfio GUARNERA, Leonardo FRAGAPANE, Cristina TRINGALI
  • Publication number: 20190097074
    Abstract: A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
    Type: Application
    Filed: October 23, 2018
    Publication date: March 28, 2019
    Inventors: Cosimo Gerardi, Cristina Tringali, Sebastiano Ravesi, Marina Foti, NoemiGraziana Sparta', Corrado Accardi, Stella Loverso
  • Patent number: 10128396
    Abstract: A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: November 13, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Cosimo Gerardi, Cristina Tringali, Sebastiano Ravesi, Marina Foti, NoemiGraziana Sparta′, Corrado Accardi, Stella Loverso
  • Patent number: 10103281
    Abstract: A thin film amorphous silicon solar cell may have front contact between a hydrogenated amorphous silicon layer and a transparent conductive oxide layer. The cell may include a layer of a refractory metal, chosen among the group composed of molybdenum, tungsten, tantalum and titanium, of thickness adapted to ensure a light transmittance of at least 80%, interposed therebetween, before growing by PECVD a hydrogenated amorphous silicon p-i-n light absorption layer over it. A refractory metal layer of just about 1 nm thickness may effectively shield the oxide from the reactive plasma, thereby preventing a diffused defect when forming the p.i.n. layer that would favor recombination of light-generated charge carriers.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 16, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Salvatore Lombardo, Cosimo Gerardi, Sebastiano Ravesi, Marina Foti, Cristina Tringali, Stella Loverso, Nicola Costa
  • Patent number: 9331151
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 3, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sebastiano Ravesi, Corrado Accardi, Cristina Tringali, Noemi Graziana Sparta′, Stella Loverso, Filippo Giannazzo
  • Publication number: 20160079453
    Abstract: A thin film amorphous silicon solar cell may have front contact between a hydrogenated amorphous silicon layer and a transparent conductive oxide layer. The cell may include a layer of a refractory metal, chosen among the group composed of molybdenum, tungsten, tantalum and titanium, of thickness adapted to ensure a light transmittance of at least 80%, interposed therebetween, before growing by PECVD a hydrogenated amorphous silicon p-i-n light absorption layer over it. A refractory metal layer of just about 1 nm thickness may effectively shield the oxide from the reactive plasma, thereby preventing a diffused defect when forming the p.i.n. layer that would favor recombination of light-generated charge carriers.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: SALVATORE LOMBARDO, COSIMO GERARDI, SEBASTIANO RAVESI, MARINA FOTI, CRISTINA TRINGALI, STELLA LOVERSO, NICOLA COSTA
  • Publication number: 20150303264
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Sebastiano Ravesi, Corrado Accardi, Cristina Tringali, Noemi Graziana Sparta', Stella Loverso, Filippo Giannazzo
  • Patent number: 9099305
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: August 4, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Noemi Graziana Sparta', Cristina Tringali, Stella Loverso, Sebastiano Ravesi, Corrado Accardi, Filippo Giannazzo