Patents by Inventor Cyprian Emeka Uzoh

Cyprian Emeka Uzoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230115122
    Abstract: Methods of bonding thin dies to substrates. In one such method, a wafer is attached to a support layer. The wafer and support layer are attached to a dicing structure and then singulated to form a plurality of semiconductor die components. Each semiconductor die component comprises a thinned die and a support layer section attached to the thinned die where each support layer section is disposed between the corresponding thinned die and the dicing structure. At least one of the semiconductor die components is then bonded to a substrate without an intervening adhesive such that the thinned die is disposed between the substrate and the support layer section. The support layer section is then removed from the thinned die.
    Type: Application
    Filed: September 13, 2022
    Publication date: April 13, 2023
    Inventors: Cyprian Emeka Uzoh, Thomas Workman, Gabriel Z. Guevara, Dominik Suwito, Guilian Gao
  • Publication number: 20230008039
    Abstract: Representative implementations provide techniques for processing integrated circuit (IC) dies and related devices, in preparation for stacking and bonding the devices. The disclosed techniques provide removal of processing residue from the device surfaces while protecting the underlying layers. One or more sacrificial layers may be applied to a surface of the device during processing to protect the underlying layers. Processing residue is attached to the sacrificial layers instead of the device, and can be removed with the sacrificial layers.
    Type: Application
    Filed: May 26, 2022
    Publication date: January 12, 2023
    Inventors: Cyprian Emeka Uzoh, Guilian Gao
  • Patent number: 11552041
    Abstract: Representative implementations of techniques and methods include chemical mechanical polishing for hybrid bonding. The disclosed methods include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. Additionally, the conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: January 10, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Gaius Gillman Fountain, Jr., Chandrasekhar Mandalapu, Cyprian Emeka Uzoh, Jeremy Alfred Theil
  • Publication number: 20220415734
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 29, 2022
    Inventors: Rajesh Katkar, Liang Wang, Cyprian Emeka Uzoh, Shaowu Huang, Guilian Gao, Ilyas Mohammed
  • Patent number: 11515279
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: November 29, 2022
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Liang Wang, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20220320035
    Abstract: Disclosed herein are methods for direct bonding. In some embodiments, a direct bonding method comprises preparing a first bonding surface of a first element for direct bonding to a second bonding surface of a second element; and after the preparing, providing a protective layer over the prepared first bonding surface of the first element, the protective layer having a thickness less than 3 microns.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 6, 2022
    Inventors: Cyprian Emeka Uzoh, Thomas Workman
  • Publication number: 20220302058
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220293567
    Abstract: Direct bonded stack structures for increased reliability and improved yields in microelectronics are provided. Structural features and stack configurations are provided for memory modules and 3DICs to reduce defects in vertically stacked dies. Example processes alleviate warpage stresses between a thicker top die and direct bonded dies beneath it, for example. An etched surface on the top die may relieve warpage stresses. An example stack may include a compliant layer between dies. Another stack configuration replaces the top die with a layer of molding material to circumvent warpage stresses. An array of cavities on a bonding surface can alleviate stress forces. One or more stress balancing layers may also be created on a side of the top die or between other dies to alleviate or counter warpage. Rounding of edges can prevent stresses and pressure forces from being destructively transmitted through die and substrate layers. These measures may be applied together or in combinations in a single package.
    Type: Application
    Filed: February 25, 2022
    Publication date: September 15, 2022
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Thomas Workman, Guilian Gao, Gaius Gillman Fountain, JR., Laura Wills Mirkarimi, Belgacem Haba, Gabriel Z. Guevara, Joy Watanabe
  • Publication number: 20220285213
    Abstract: Representative implementations of techniques, methods, and formulary provide repairs to processed semiconductor substrates, and associated devices, due to erosion or “dishing” of a surface of the substrates. The substrate surface is etched until a preselected portion of one or more embedded interconnect devices protrudes above the surface of the substrate. The interconnect devices are wet etched with a selective etchant, according to a formulary, for a preselected period of time or until the interconnect devices have a preselected height relative to the surface of the substrate. The formulary includes one or more oxidizing agents, one or more organic acids, and glycerol, where the one or more oxidizing agents and the one or more organic acids are each less than 2% of formulary and the glycerol is less than 10% of the formulary.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: Cyprian Emeka Uzoh, Laura Wills Mirkarimi
  • Publication number: 20220285303
    Abstract: A bonded structure is disclosed. The bonded structure can include a first element that includes a first conductive feature and a first nonconductive region. The first conductive feature can include a fine grain metal that has an average grain size of 500 nm or less. The bonded structure can include a second element that includes a second conductive feature and a second nonconductive region. The first conductive feature is directly bonded to the second conductive feature without an intervening adhesive, and the second nonconductive region is directly bonded to the second nonconductive region without an intervening adhesive.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 8, 2022
    Inventors: Laura Wills Mirkarimi, Cyprian Emeka Uzoh
  • Patent number: 11417576
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 16, 2022
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Rajesh Katkar, Liang Wang, Cyprian Emeka Uzoh, Shaowu Huang, Guilian Gao, Ilyas Mohammed
  • Publication number: 20220246497
    Abstract: A microelectronic structure with through substrate vias (TSVs) and method for forming the same is disclosed. The microelectronic structure can include a bulk semiconductor with a via structure. The via structure can have a first and second conductive portion. The via structure can also have a barrier layer between the first conductive portion and the bulk semiconductor. The structure can have a second barrier layer between the first and second conductive portions. The second conductive portion can extend from the second barrier layer to the upper surface of the bulk semiconductor. The microelectronic structure containing TSVs is configured so that the microelectronic structure can be bonded to a second element or structure.
    Type: Application
    Filed: December 27, 2021
    Publication date: August 4, 2022
    Inventors: Gaius Gillman Fountain, JR., Cyprian Emeka Uzoh, George Carlton Hudson, John Posthill
  • Publication number: 20220246564
    Abstract: Structures and techniques provide bond enhancement in microelectronics by trapping contaminants and byproducts during bonding processes, and arresting cracks. Example bonding surfaces are provided with recesses, sinks, traps, or cavities to capture small particles and gaseous byproducts of bonding that would otherwise create detrimental voids between microscale surfaces being joined, and to arrest cracks. Such random voids would compromise bond integrity and electrical conductivity of interconnects being bonded. In example systems, a predesigned recess space or predesigned pattern of recesses placed in the bonding interface captures particles and gases, reducing the formation of random voids, thereby improving and protecting the bond as it forms. The recess space or pattern of recesses may be placed where particles collect on the bonding surface, through example methods of determining where mobilized particles move during bond wave propagation.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 4, 2022
    Inventors: Guilian Gao, Javier A. DeLaCruz, Shaowu Huang, Liang Wang, Gaius Gillman Fountain, JR., Rajesh Katkar, Cyprian Emeka Uzoh
  • Patent number: 11393779
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 19, 2022
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220208723
    Abstract: Embodiments of methods for producing direct bonded structures and methods for forming direct bonded structures are disclosed. The direct bonded structures may include elements comprising active electronics, microelectromechanical systems, optical elements, and so forth.
    Type: Application
    Filed: December 29, 2021
    Publication date: June 30, 2022
    Inventors: Rajesh Katkar, Belgacem Haba, Paul M. Enquist, Gaius Gillman Fountain, JR., Guilian Gao, Cyprian Emeka Uzoh
  • Publication number: 20220208702
    Abstract: An element is disclosed. The element can include a non-conductive structure having a non-conductive bonding surface, a cavity at least partially extending through a portion of a thickness of the non-conductive structure from the non-conductive bonding surface, and a conductive pad disposed in the cavity. The cavity has a bottom side and a sidewall. The conductive pad has a bonding surface and a back side opposite the bonding surface. An average size of the grains at the bonding surface is smaller than an average size of the grains adjacent the bottom side of the cavity. The conductive pad can include a crystal structure with grains oriented along a 111 crystal plane. The element can be bonded to another element to form a bonded structure. The element and the other element can be directly bonded to one another without an intervening adhesive.
    Type: Application
    Filed: December 29, 2021
    Publication date: June 30, 2022
    Inventor: Cyprian Emeka Uzoh
  • Patent number: 11367652
    Abstract: Representative implementations of techniques, methods, and formulary provide repairs to processed semiconductor substrates, and associated devices, due to erosion or “dishing” of a surface of the substrates. The substrate surface is etched until a preselected portion of one or more embedded interconnect devices protrudes above the surface of the substrate. The interconnect devices are wet etched with a selective etchant, according to a formulary, for a preselected period of time or until the interconnect devices have a preselected height relative to the surface of the substrate. The formulary includes one or more oxidizing agents, one or more organic acids, and glycerol, where the one or more oxidizing agents and the one or more organic acids are each less than 2% of formulary and the glycerol is less than 10% of the formulary.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: June 21, 2022
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Cyprian Emeka Uzoh, Laura Wills Mirkarimi
  • Patent number: 11348801
    Abstract: Representative implementations provide techniques for processing integrated circuit (IC) dies and related devices, in preparation for stacking and bonding the devices. The disclosed techniques provide removal of processing residue from the device surfaces while protecting the underlying layers. One or more sacrificial layers may be applied to a surface of the device during processing to protect the underlying layers. Processing residue is attached to the sacrificial layers instead of the device, and can be removed with the sacrificial layers.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: May 31, 2022
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Cyprian Emeka Uzoh, Guilian Gao
  • Patent number: 11348898
    Abstract: An integrated circuit and a method for designing an IC wherein the base or host chip is bonded to smaller chiplets via DBI technology. The bonding of chip to chiplet creates an uneven or multi-level surface of the overall chip requiring a releveling for future bonding. The uneven surface is built up with plating of bumps and subsequently releveled with various methods including planarization.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: May 31, 2022
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Cyprian Emeka Uzoh, Rajesh Katkar, Ilyas Mohammed
  • Publication number: 20220165692
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: December 22, 2021
    Publication date: May 26, 2022
    Applicant: Invensas Bonding Technologies, Inc.
    Inventors: Cyprian Emeka UZOH, Jeremy Alfred THEIL, Rajesh Katkar, Guilian GAO, Laura Wills MIRKARIMI