Patents by Inventor D. McGregor

D. McGregor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7216533
    Abstract: A method of testing a downhole formation using a formation tester on a drill string. The formation tester is disposed downhole on a drill string and a formation test is performed by forming a seal between a formation probe assembly and the formation. A drawdown piston then creates a volume within a cylinder to draw formation fluid into the volume through the probe assembly. The pressure of the fluid within the cylinder is monitored. The formation test procedure may then be adjusted. The test procedure may be adjusted to account for the bubble point pressure of the fluid being monitored. The pressure may monitored to verify a proper seal is formed or is being maintained. The test procedure may also be performed by maintaining a substantially constant drawdown rate using a hydraulic threshold or a variable restrictor.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: May 15, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Malcolm D. McGregor, Gregory N. Gilbert, Mark A. Proett, James M. Fogal, David Welshans, Glenn C. Gray, Svetozar Simeonov, Laban M. Marsh, Jean Michel Beique, James E. Stone
  • Patent number: 7097302
    Abstract: A contact lens for wearing on a patient's eye comprises an anterior surface adapted to face away from the eye and a posterior surface adapted to face toward the eye. The posterior surface has an optical zone disposed in the center of the lens, a secondary zone coupled to the optical zone and extending radially therefrom, and a peripheral zone coupled to the secondary zone and extending radially therefrom. The curve of the optical zone is spherical and rearwardly concave, the curve of the secondary zone is aspheric and rearwardly concave, and the curve of the peripheral zone is spherical and rearwardly concave.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 29, 2006
    Inventor: Scott D. McGregor
  • Patent number: 6912267
    Abstract: A laser-plasma EUV radiation source (10) that employs one or more approaches for preventing vaporization of material from a nozzle assembly (40) of the source (10) by electrical discharge from the plasma (30). The first approach includes employing an electrically isolating nozzle end, such as a glass capillary tube (46). The tube (46) extends beyond all of the conductive surfaces of the nozzle assembly (40) by a suitable distance so that the pressure around the closest conducting portion of the nozzle assembly (40) is low enough not to support arcing. A second approach includes providing electrical isolation of the conductive portions of the source (40) from the vacuum chamber wall. A third approach includes applying a bias potential (52) to the nozzle assembly (40) to raise the potential of the nozzle assembly (40) to the potential of the arc.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: June 28, 2005
    Assignee: University of Central Florida Research Foundation
    Inventors: Rocco A. Orsini, Michael B. Petach, Mark E. Michaelian, Henry Shields, Roy D. McGregor, Steven W. Fornaca
  • Patent number: 6864497
    Abstract: An EUV radiation source that creates a stable solid target filament. The source includes a nozzle assembly having a condenser chamber for cryogenically cooling a gaseous target material into a liquid state. The liquid target material is forced through an orifice of a target filament generator into an evaporation chamber as a liquid target stream. The evaporation chamber has a higher pressure than a vacuum process chamber of the source to allow the liquid target material to freeze into a target filament in a stable manner. The frozen target filament is emitted from the evaporation chamber into the process chamber as a stable target filament towards a target area. The higher pressure in the evaporation chamber can be the result of the evaporative cooling of the target material alone or in combination with a supplemental gas.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: March 8, 2005
    Assignee: University of Central Florida Research Foundation
    Inventors: Rocco A. Orsini, Michael B. Petach, Roy D. McGregor
  • Publication number: 20050029349
    Abstract: A system for increasing transaction security across existing infrastructure is provided. A user bio-metric sensor device is integrated into a credit or debit card. A display unit provides a key, preferably encrypted, upon successful utilization of the sensor device. Included in the key generation mechanism is an indicator of the transaction number or other sequential count indicative of card use. An authorization service decrypts the key in a manner at least partially dependent upon a second sequential count maintained in sync with the first count to determine whether the use is authorized. In one embodiment, a separate credit card reader may be configured to read conventional credit cards, smart cards, and credit cards incorporating such bio-metric sensor devices.
    Type: Application
    Filed: September 14, 2004
    Publication date: February 10, 2005
    Inventors: Christopher McGregor, Travis McGregor, D. McGregor
  • Patent number: 6835944
    Abstract: An EUV radiation source that creates a stable solid filament target. The source includes a nozzle assembly having a condenser chamber for cryogenically cooling a gaseous target material into a liquid state. The liquid target material is filtered by a filter and sent to a holding chamber under pressure. The holding chamber allows entrained gas bubbles in the target material to be condensed into liquid prior to the filament target being emitted from the nozzle assembly. The target material is forced through a nozzle outlet tube to be emitted from the nozzle assembly as a liquid target stream. A thermal shield is provided around the outlet tube to maintain the liquid target material in the cryogenic state. The liquid target stream freezes and is vaporized by a laser beam from a laser source to generate the EUV radiation.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: December 28, 2004
    Assignee: University of Central Florida Research Foundation
    Inventors: Rocco A. Orsini, Michael B. Petach, Mark E. Michaelian, Henry Shields, Roy D. McGregor, Steven W. Fornaca
  • Patent number: 6801125
    Abstract: A system for assisting a driver of a vehicle in precisely reaching a target destination while the vehicle is in reverse. The system comprises a control unit, an HD sensor, a rear wheel steering actuator, and a control positioned for operation by the driver. The HD sensor is in communication with the control unit and measures the relative position of a target location with respect to a location on the vehicle. The rear wheel steering actuator is in communication with the control unit and steers at least a rear wheel of the vehicle. The driver operated control is also in communication with the control unit. The control unit, upon receiving a signal from the control, enters an HD mode in which the control unit operates the rear wheel steering actuator to maneuver the vehicle to bring the target location and the location on the vehicle into alignment.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: October 5, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Brian D. McGregor, Jeffrey T. Klass, Gordon D. Richardson, Benjamin D. Waghorn
  • Publication number: 20040182619
    Abstract: A system for assisting a driver of a vehicle in precisely reaching a target destination while the vehicle is in reverse. The system comprises a control unit, an HD sensor, a rear wheel steering actuator, and a control positioned for operation by the driver. The HD sensor is in communication with the control unit and measures the relative position of a target location with respect to a location on the vehicle. The rear wheel steering actuator is in communication with the control unit and steers at least a rear wheel of the vehicle. The driver operated control is also in communication with the control unit. The control unit, upon receiving a signal from the control, enters an HD mode in which the control unit operates the rear wheel steering actuator to maneuver the vehicle to bring the target location and the location on the vehicle into alignment.
    Type: Application
    Filed: March 19, 2003
    Publication date: September 23, 2004
    Inventors: Brian D. McGregor, Jeffrey T. Klass, Gordon D. Richardson, Benjamin D. Waghorn
  • Publication number: 20040114720
    Abstract: An EUV radiation source that creates a stable solid target filament. The source includes a nozzle assembly having a condenser chamber for cryogenically cooling a gaseous target material into a liquid state. The liquid target material is forced through an orifice of a target filament generator into an evaporation chamber as a liquid target stream. The evaporation chamber has a higher pressure than a vacuum process chamber of the source to allow the liquid target material to freeze into a target filament in a stable manner. The frozen target filament is emitted from the evaporation chamber into the process chamber as a stable target filament towards a target area. The higher pressure in the evaporation chamber can be the result of the evaporative cooling of the target material alone or in combination with a supplemental gas.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 17, 2004
    Inventors: Rocco A. Orsini, Michael B. Petach, Roy D. McGregor
  • Patent number: 6738452
    Abstract: A target material delivery system in the form of a nozzle (50) for an EUV radiation source (10). The nozzle (50) includes a target material supply line (66) having an orifice (68) through which droplets (76) of a liquid target material (64) are emitted, where the droplets (76) have a predetermined size, speed and spacing therebetween. The droplets (76) are mixed with a carrier gas (74) in a mixing chamber (54) enclosing the target material chamber (60) and the mixture of the droplets (76) and the carrier gas (74) enter a drift tube (56) from the mixing chamber (54). The droplets (76) are emitted into an accelerator chamber (124) from the drift tube (56) where the speed of the droplets (76) is increased to control the spacing therebetween. A vapor extractor (90) can be mounted to the accelerator chamber (124) or the drift tube (56) to remove the carrier gas (74) and target material vapor, which would otherwise adversely affect the EUV radiation generation.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: May 18, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Roy D. McGregor, Robert A. Bunnell, Michael B. Petach, Rocco A. Orsini
  • Publication number: 20040086080
    Abstract: A laser-plasma EUV radiation source (10) that employs one or more approaches for preventing vaporization of material from a nozzle assembly (40) of the source (10) by electrical discharge from the plasma (30). The first approach includes employing an electrically isolating nozzle end, such as a glass capillary tube (46). The tube (46) extends beyond all of the conductive surfaces of the nozzle assembly (40) by a suitable distance so that the pressure around the closest conducting portion of the nozzle assembly (40) is low enough not to support arcing. A second approach includes providing electrical isolation of the conductive portions of the source (40) from the vacuum chamber wall. A third approach includes applying a bias potential (52) to the nozzle assembly (40) to raise the potential of the nozzle assembly (40) to the potential of the arc.
    Type: Application
    Filed: November 6, 2002
    Publication date: May 6, 2004
    Inventors: Rocco A. Orsini, Michael B. Petach, Mark E. Michaelian, Henry Shields, Roy D. McGregor, Steven W. Fornaca
  • Publication number: 20040071266
    Abstract: An EUV radiation source that creates a stable solid filament target. The source includes a nozzle assembly having a condenser chamber for cryogenically cooling a gaseous target material into a liquid state. The liquid target material is filtered by a filter and sent to a holding chamber under pressure. The holding chamber allows entrained gas bubbles in the target material to be condensed into liquid prior to the filament target being emitted from the nozzle assembly. The target material is forced through a nozzle outlet tube to be emitted from the nozzle assembly as a liquid target stream. A thermal shield is provided around the outlet tube to maintain the liquid target material in the cryogenic state. The liquid target stream freezes and is vaporized by a laser beam from a laser source to generate the EUV radiation.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 15, 2004
    Inventors: Rocco A. Orsini, Michael B. Petach, Mark E. Michaelian, Henry Shields, Roy D. McGregor, Steven W. Fornaca
  • Patent number: 6661018
    Abstract: A gas jet nozzle (20, 60) for an extreme-ultraviolet light (EUV) source, including a housing (22, 62) having a front (24, 64) and a back (26, 66). The housing (22, 62) is coupleable to a primary gas source (44) and a secondary gas source (46) and is adapted to. expel primary gas (36, 76) and secondary gas (42, 82) from the housing front (24, 64). The housing (22, 62) has a gas-expelling primary channel (39, 70) located centrally within the housing (22, 62) and a gas-expelling secondary channel (34, 74) proximate the primary channel (39, 70). The primary channel (39, 70) may be circular and the secondary channel (34, 74) may be annular, surrounding the primary channel (39, 70). A secondary gas stream (42, 82) expelled from the secondary channel (34, 74) restricts the lateral expansion of a primary gas stream (36, 76) expelled from the primary channel (39, 70), optimizing gas jet properties and reducing heating and erosion of the nozzle (20, 60).
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: December 9, 2003
    Assignee: Northrop Grumman Corporation
    Inventors: Roy D. McGregor, Charles W. Clendening, Jr.
  • Publication number: 20030223546
    Abstract: A target material delivery system in the form of a nozzle (50) for an EUV radiation source (10). The nozzle (50) includes a target material supply line (66) having an orifice (68) through which droplets (76) of a liquid target material (64) are emitted, where the droplets (76) have a predetermined size, speed and spacing therebetween. The droplets (76) are mixed with a carrier gas (74) in a mixing chamber (54) enclosing the target material chamber (66) and the mixture of the droplets (76) and the carrier gas (74) enter a drift tube (56) from the mixing chamber (54). The droplets (76) are emitted into an accelerator chamber (124) from the drift tube (56) where the speed of the droplets (76) is increased to control the spacing therebetween. A vapor extractor (90) can be mounted to the accelerator chamber (124) or the drift tube (56) to remove the carrier gas (74) and target material vapor, which would otherwise adversely affect the EUV radiation generation.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 4, 2003
    Inventors: Roy D. McGregor, Robert A. Bunnell, Michael B. Petach, Rocco A. Orsini
  • Patent number: 6657213
    Abstract: A nozzle (46) for a laser-plasma EUV radiation source that provides thermal isolation between the nozzle body (48) and the target material flowing therethrough. A target delivery tube (72) is provided that extends through the nozzle body (48). The delivery tube (72) has an expansion aperture (80) positioned behind an exit collimator (50) of the nozzle body (48). The delivery tube (72) is made of a low thermal conductivity material, such as stainless steel, and is in limited contact with the nozzle body (48) so that heating of the nozzle body (48) from the plasma does not heat the liquid target material being delivered through the delivery tube (72). The expansion aperture (80) has a smaller diameter than the exit collimator (50).
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: December 2, 2003
    Assignee: Northrop Grumman Corporation
    Inventors: Rocco A. Orsini, Michael B. Petach, Roy D. McGregor
  • Publication number: 20020162974
    Abstract: A nozzle (46) for a laser-plasma EUV radiation source that provides thermal isolation between the nozzle body (48) and the target material flowing therethrough. A target delivery tube (72) is provided that extends through the nozzle body (48). The delivery tube (72) has an expansion aperture (80) positioned behind an exit collimator (50) of the nozzle body (48). The delivery tube (72) is made of a low thermal conductivity material, such as stainless steel, and is in limited contact with the nozzle body (48) so that heating of the nozzle body (48) from the plasma does not heat the liquid target material being delivered through the delivery tube (72). The expansion aperture (80) has a smaller diameter than the exit collimator (50).
    Type: Application
    Filed: May 3, 2001
    Publication date: November 7, 2002
    Inventors: Rocco A. Orsini, Michael B. Petach, Roy D. McGregor
  • Patent number: 6324256
    Abstract: A laser-plasma EUV radiation source (50) that generates larger liquid droplets (72) for the plasma target material. The EUV source (50) forces a liquid (58), preferably Xenon, through a nozzle (64), instead of forcing a gas through the nozzle. The geometry of the nozzle (64) and the pressure of the liquid (58) through the nozzle (64) atomizes the liquid (58) to form a dense spray (70) of droplets (72). Because the droplets (72) are formed from a liquid, they are larger in size, and are more conducive to generating EUV radiation. A condenser (60) is used to convert gaseous Xenon (54) to the liquid (58) prior to being forced through the nozzle (64).
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: November 27, 2001
    Assignee: TRW Inc.
    Inventors: Roy D. McGregor, Michael B. Petach, Rocco A. Orsini
  • Patent number: 6080042
    Abstract: A wafer polishing apparatus includes one or more wafer carriers each containing one or more wafers mounted on both sides of the carrier. Upper and lower turntables having upper and lower polishing surfaces, rotate to polish the wafers attached to the carriers. Hence, wafers on the top of the carriers, and wafers on the bottom of the carriers are polished simultaneously. This configuration increases throughput; also, thermal deformations in the wafers are reduced, thus improving flatness.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: June 27, 2000
    Assignee: Virginia Semiconductor, Inc.
    Inventors: Anderson D. McGregor, Thomas G. Digges, Jr.
  • Patent number: 5281418
    Abstract: This invention relates to methods and compositions for combating mountain pine beetle (Dendroctonus ponderosae) which causes severe damage to pine trees in North America. A method and apparatus for reducing attack by mountain pine beetles Dendroctonus ponderosae on pine trees, Pinus species, by spacially deploying verbenone (4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one) in stands of pine trees.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: January 25, 1994
    Assignee: Phero Tech Inc.
    Inventors: Bo S. Lindgren, John H. Borden, Marek Gnatowski, Po C. Wong, Mark D. McGregor, deceased
  • Patent number: D335770
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: May 25, 1993
    Inventor: Dorsie D. McGregor