Patents by Inventor Daemian Raj BENJAMIN RAJ

Daemian Raj BENJAMIN RAJ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240043994
    Abstract: Exemplary semiconductor processing systems may include a gas source coupled with a number of processing chambers. The gas source may include a controller. Each chamber may include an exhaust assembly having a foreline and a pump. The systems may include at least one abatement system coupled with each pump. The systems may include a plurality of exhaust lines that extend between each pump and the abatement system. The systems may include a dilution gas source coupled with each exhaust line. The systems may include a mass flow controller coupled between the dilution gas source and each exhaust line. The systems may include a temperature sensor coupled with each exhaust line between the pump and the abatement system. The temperature sensor may be communicatively coupled with the controller of the gas source, which may control flow of a gas to a chamber based on a measurement from the temperature sensor.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Daemian Raj Benjamin Raj, Liliya I. Krivulina, Bharath Kumar Hanchanoor Rathnakara Gowda, Collen Leng, Syed A. Alam, Uwe P. Haller, Robert Casanova, Ryan Thomas Downey, Peter Standish
  • Publication number: 20240044000
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Shailendra SRIVASTAVA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Daemian Raj BENJAMIN RAJ, Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Gregory Eugene CHICHKANOFF, Xinhai HAN, Masaki OGATA, Kristopher ENSLOW, Wenjiao WANG
  • Publication number: 20230420245
    Abstract: In one example, a process chamber comprises a lid assembly, a first gas supply, second gas supply, a chamber body, and a substrate support. The lid assembly comprises a gas box, a gas conduit passing through the gas box, a blocker plate, and a showerhead. The gas box comprises a gas distribution plenum, and a distribution plate comprising a plurality of holes aligned with the gas distribution plenum. The blocker plate is coupled to the gas box forming a first plenum. The showerhead is coupled to the blocker plate forming a second plenum. The first gas supply is coupled to the gas distribution plenum, and the second gas supply system is coupled to the gas conduit. The chamber body is coupled to the showerhead, and the substrate support assembly is disposed within an interior volume of the chamber body, and is configured to support a substrate during processing.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Daemian Raj BENJAMIN RAJ, Gregory Eugene CHICHKANOFF, Shailendra SRIVASTAVA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Abhigyan KESHRI, Allison YAU
  • Patent number: 11851759
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: December 26, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shailendra Srivastava, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Gregory Eugene Chichkanoff, Xinhai Han, Masaki Ogata, Kristopher Enslow, Wenjiao Wang
  • Publication number: 20230369072
    Abstract: Exemplary fluid delivery assemblies for a semiconductor processing system may include a liquid delivery source. The assemblies may include a heater that is fluidly coupled with an outlet of the liquid delivery source. The assemblies may include a liquid flow controller that is fluidly coupled with the liquid delivery source downstream of the heater. The assemblies may include a liquid vaporizer fluidly coupled with a downstream end of the liquid flow controller. The assemblies may include a chamber delivery line coupled with an output of the liquid vaporizer.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Daemian Raj Benjamin Raj, Collen Leng, Syed A. Alam, Tianyang Li
  • Patent number: 11798803
    Abstract: In one example, a process chamber comprises a lid assembly, a first gas supply, second gas supply, a chamber body, and a substrate support. The lid assembly comprises a gas box, a gas conduit passing through the gas box, a blocker plate, and a showerhead. The gas box comprises a gas distribution plenum, and a distribution plate comprising a plurality of holes aligned with the gas distribution plenum. The blocker plate is coupled to the gas box forming a first plenum. The showerhead is coupled to the blocker plate forming a second plenum. The first gas supply is coupled to the gas distribution plenum, and the second gas supply system is coupled to the gas conduit. The chamber body is coupled to the showerhead, and the substrate support assembly is disposed within an interior volume of the chamber body, and is configured to support a substrate during processing.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Daemian Raj Benjamin Raj, Gregory Eugene Chichkanoff, Shailendra Srivastava, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Abhigyan Keshri, Allison Yau
  • Patent number: 11776835
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Publication number: 20230288007
    Abstract: Exemplary modular gas blocks may include a body having inlet and outlet ends. The body may define a portion of a first gas path along a length of the body and may define a second gas path along a width of the body. The first gas path may include channel segments defined within the body. The inlet end may define a gas inlet that is coupled with the first gas path. The body may define first fluid ports that are coupled with the first gas path. A fluid port of the first fluid ports may be coupled with the gas inlet. The first fluid ports may be coupled with one another via a respective channel segment. An upper surface may define a lateral fluid port that is spaced apart from a first fluid port along the width and is coupled with the first fluid port via the second gas path.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 14, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Daemian Raj Benjamin Raj, Kiran Garikipati, Kurt R. Langeland, Syed A. Alam
  • Publication number: 20230139688
    Abstract: Exemplary modular gas delivery assemblies may include a plurality of modular gas blocks coupled together. Each gas block may include an upper portion and a lower portion. A first end of the upper portion may extend beyond a first end of the lower portion and a second end of the lower portion may extend beyond a second end of the upper portion. A first fluid channel may include a first fluid port, a second fluid port, and a third fluid port. The block body may define a second fluid channel that extends transversely to the first fluid channel. A first modular gas block may be coupled with a second modular gas block and a third modular gas block such that the first fluid channels of each of the first, second, and third modular gas blocks are fluidly coupled with one another.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Daemian Raj Benjamin Raj, Kiran Garikipati, Syed A. Alam, Kurt R. Langeland
  • Publication number: 20230131809
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Publication number: 20230123089
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Shailendra SRIVASTAVA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Daemian Raj Benjamin RAJ, Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Gregory Eugene CHICHKANOFF, Xinhai HAN, Masaki OGATA, Kristopher ENSLOW, Wenjiao WANG
  • Patent number: 11570879
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Publication number: 20230011938
    Abstract: Exemplary semiconductor processing chambers may include a chamber body. The chambers may include a substrate support disposed within the chamber body. The substrate support may define a substrate support surface. The chambers may include a showerhead positioned supported atop the chamber body. The substrate support and a bottom surface of the showerhead may at least partially define a processing region within the semiconductor processing chamber. The showerhead may define a plurality of apertures through the showerhead. The bottom surface of the showerhead may define an annular groove or ridge that is positioned directly above at least a portion of the substrate support.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Saketh Pemmasani, Daemian Raj Benjamin Raj, Xiaopu Li, Akshay Dhanakshirur, Mayur Govind Kulkarni, Madhu Santosh Kumar Mutyala, Deenesh Padhi, Hang Yu
  • Patent number: 11530482
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: December 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shailendra Srivastava, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Gregory Eugene Chichkanoff, Xinhai Han, Masaki Ogata, Kristopher Enslow, Wenjiao Wang
  • Patent number: 11501993
    Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The assemblies may include a support stem coupled with the electrostatic chuck body. The assemblies may include a heater embedded within the electrostatic chuck body. The assemblies may also include an electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The substrate support assemblies may be characterized by a leakage current through the electrostatic chuck body of less than or about 4 mA at a temperature of greater than or about 500° C. and a voltage of greater than or about 600 V.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Juan Carlos Rocha-Alvarez, Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Xinhai Han, Deenesh Padhi, Kesong Hu, Chuan Ying Wang
  • Patent number: 11367594
    Abstract: Exemplary semiconductor processing chambers may include a gasbox characterized by a first surface and a second surface opposite the first surface. The gasbox may define a central aperture. The gasbox may define an annular channel extending about the central aperture. The annular channel may be fluidly accessible from the first surface of the gasbox. The gasbox may further define a plurality of outlet apertures extending from the annular channel through the second surface of the gasbox.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 21, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mingle Tong, Li-Qun Xia, Daemian Raj Benjamin Raj
  • Patent number: 11339475
    Abstract: An apparatus and a method for depositing a film layer that may have minimum contribution to overlay error after a sequence of deposition and lithographic exposure processes are provided. In one example, a method includes positioning a substrate on a substrate support in a process chamber, and flowing a deposition gas mixture comprising a silicon containing gas and a reacting gas to the process chamber through a showerhead having a convex surface facing the substrate support or a concave surface facing the substrate support in accordance with a stress profile of the substrate. A plasma is formed in the presence of the deposition gas mixture in the process chamber by applying an RF power to multiple coupling points of the showerhead that are symmetrically arranged about a center point of the showerhead. A deposition process is then performed on the substrate.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 24, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Xinhai Han, Deenesh Padhi, Daemian Raj Benjamin Raj, Kristopher Enslow, Wenjiao Wang, Masaki Ogata, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Gregory Eugene Chichkanoff, Shailendra Srivastava, Jonghoon Baek, Zakaria Ibrahimi, Juan Carlos Rocha-Alvarez, Tza-Jing Gung
  • Publication number: 20220119952
    Abstract: Exemplary deposition methods may include electrostatically chucking a semiconductor substrate at a first voltage within a processing region of a semiconductor processing chamber. The methods may include performing a deposition process. The deposition process may include forming a plasma within the processing region of the semiconductor processing chamber. The methods may include halting formation of the plasma within the semiconductor processing chamber. The methods may include, simultaneously with the halting, increasing the first voltage of electrostatic chucking to a second voltage. The methods may include purging the processing region of the semiconductor processing chamber.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Rana Howlader, Hang Yu, Madhu Santosh Kumar Mutyala, Zheng John Ye, Abhigyan Keshri, Sanjay Kamath, Daemian Raj Benjamin Raj, Deenesh Padhi
  • Publication number: 20220102179
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Publication number: 20220020570
    Abstract: Exemplary semiconductor processing systems may include a processing chamber including a lid stack having an output manifold. The systems may include a gas panel. The systems may include an input manifold. The input manifold may fluidly couple the gas panel with the output manifold of the processing chamber. A delivery line may extend from the input manifold to the output manifold. The systems may include a first transmission line extending from a first set of precursor sources of the gas panel to the delivery line. The systems may include a second transmission line extending from a second set of precursor sources of the gas panel to the delivery line. The second transmission line may be switchably coupled between the delivery line and an exhaust of the semiconductor processing system.
    Type: Application
    Filed: July 19, 2020
    Publication date: January 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sai Susmita Addepalli, Yue Chen, Abhigyan Keshri, Qiang Ma, Zhijun Jiang, Shailendra Srivastava, Daemian Raj Benjamin Raj, Ganesh Balasubramanian