Patents by Inventor Dahl Young Khang

Dahl Young Khang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10374072
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 10355113
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: July 16, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Patent number: 10204864
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 12, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20180324947
    Abstract: The present invention relates to a metallic nano structure including a plurality of metallic nano materials; and a junction locally disposed in a region where the metallic nano materials adjacent to each other among the plurality of metallic nano materials are in contact with each other in order to bond the adjacent metallic nano materials.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 8, 2018
    Inventors: Dahl-Young Khang, Sung-Soo Yoon
  • Publication number: 20170309733
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Patent number: 9768086
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 19, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 9761444
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 12, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20170200679
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: October 31, 2016
    Publication date: July 13, 2017
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN, Etienne MENARD
  • Publication number: 20160381789
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 29, 2016
    Publication date: December 29, 2016
    Inventors: John A. ROGERS, Matthew MEITL, Yugang SUN, Heung Cho KO, Andrew CARLSON, Won Mook CHOI, Mark STOYKOVICH, Hanqing JIANG, Yonggang HUANG, Ralph G. NUZZO, Zhengtao ZHU, Etienne MENARD, Dahl-Young KHANG
  • Patent number: 9515025
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: December 6, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20160293794
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 6, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20160284544
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: September 29, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Patent number: 9450043
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 20, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 9324733
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 26, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Publication number: 20160027737
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 28, 2016
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN, Etienne MENARD
  • Patent number: 9105555
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: August 11, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20150001462
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 20, 2014
    Publication date: January 1, 2015
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN, Etienne MENARD
  • Publication number: 20140374872
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 20, 2014
    Publication date: December 25, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: John A. ROGERS, Matthew MEITL, Yugang SUN, Heung Cho KO, Andrew CARLSON, Won Mook CHOI, Mark STOYKOVICH, Hanqing JIANG, Yonggang HUANG, Ralph G. NUZZO, Zhengtao ZHU, Etienne MENARD, Dahl-Young KHANG
  • Publication number: 20140191236
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 10, 2014
    Applicant: The Board of Trustees of the University of IIIinois
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Patent number: 8754396
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: June 17, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard