Patents by Inventor Dahv A. V. Kliner

Dahv A. V. Kliner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210373348
    Abstract: Beam combining optical systems include a fiber beam combiner having multiple inputs to which output fibers of laser diode sources are spliced. Cladding light stripping regions are situated at the splices and include exposed portions of fiber claddings that are at least partially encapsulated with an optical adhesive or a polymer. A beam combiner fiber that is optically downstream of a laser source has an exposed cladding secured to a thermally conductive support with a polymer or other material that is index matched to the exposed cladding. This construction permits attenuation of cladding light propagating toward a beam combiner from a splice.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Applicant: nLIGHT, Inc.
    Inventors: Chris A. Rivera, Dahv A.V. Kliner, Joseph Emery
  • Publication number: 20210344160
    Abstract: An optical apparatus includes one or more pump sources situated to provide laser pump light, and a gain fiber optically coupled to the one or more pump sources, the gain fiber including an actively doped core situated to produce an output beam, an inner cladding and outer cladding surrounding the doped core and situated to propagate pump light, and a polymer cladding surrounding the outer cladding and situated to guide a selected portion of the pump light coupled into the inner and outer claddings of the gain fiber. Methods of pumping a fiber sources include generating pump light from one or more pump sources, coupling the pump light into a glass inner cladding and a glass outer cladding of a gain fiber of the fiber source such that a portion of the pump light is guided by a polymer cladding surrounding the glass outer cladding, and generating a single-mode output beam from the gain fiber.
    Type: Application
    Filed: January 19, 2021
    Publication date: November 4, 2021
    Applicant: NLIGHT, INC.
    Inventors: Dahv A.V. Kliner, Roger L. Farrow
  • Publication number: 20210286200
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Application
    Filed: December 18, 2020
    Publication date: September 16, 2021
    Applicant: NLIGHT, INC.
    Inventors: Ken GROSS, Brian VICTOR, Robert MARTINSEN, Dahv A.V. KLINER, Roger FARROW
  • Patent number: 11106046
    Abstract: Beam combining optical systems include a fiber beam combiner having multiple inputs to which output fibers of laser diode sources are spliced. Cladding light stripping regions are situated at the splices, and include exposed portions of fiber claddings that are at least partially encapsulated with an optical adhesive or a polymer. A beam combiner fiber that is optically downstream of a laser source has an exposed cladding secured to a thermally conductive support with a polymer or other material that is index matched to the exposed cladding. This construction permits attenuation of cladding light propagating toward a beam combiner from a splice.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: August 31, 2021
    Assignee: nLIGHT, Inc.
    Inventors: Chris A. Rivera, Dahv A. V. Kliner, Joseph Emery
  • Publication number: 20210226405
    Abstract: A modular and scalable high-power fiber laser system is configurable to generate 1 kW or more of laser output, and includes one or more separable pump modules separately disposed from each other, each pump module including a plurality of fiber-coupled component pump sources optically combined by one or more fiber-based pump module pump combiners, each pump module providing one or more pump module fiber outputs, and a gain module separately disposed from the one or more separable pump modules and including one or more gain module pump fiber inputs optically coupled to corresponding ones of the pump module fiber outputs, and including a gain fiber optically coupled to the one or more gain module pump fiber inputs, the gain fiber configured to generate a gain module fiber output power scalable in relation to the number and power of said pump module fiber outputs coupled to the gain fiber.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Applicant: nLIGHT, Inc.
    Inventor: Dahv A.V. Kliner
  • Publication number: 20210226402
    Abstract: An apparatus includes an optical gain fiber having a core, a cladding surrounding the core, the core and cladding defining an optical gain fiber numerical aperture, and a multimode fiber having a core with a larger radius than a radius of the optical gain fiber core, a cladding surrounding the core, the core and cladding of the multimode fiber defining a multimode fiber stable numerical aperture that is larger than the optical gain fiber numerical aperture, the multimode fiber being optically coupled to the optical gain fiber so as to receive an optical beam propagating in the optical gain fiber and to stably propagate the received optical beam in the multimode fiber core with low optical loss associated with the optical coupling.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Applicant: NLIGHT, INC.
    Inventors: Roger L. Farrow, Dahv A.V. Kliner
  • Patent number: 11022760
    Abstract: An apparatus includes a camera, a dark field illumination source, and a fiber inspection housing including a fiber connector input situated to receive an optical fiber connector so that an optical fiber output end of the optical fiber connector is removably insertable into an interior region of the fiber inspection housing and securable at a predetermined location in the interior region, a camera input situated to receive and secure the camera so that the camera is in optical communication with the interior region and the optical fiber output end, and a dark field illumination source input situated to receive the dark field illumination source so that light emitted from the dark field illumination source is received by the optical fiber output end at a dark field illumination angle and is scattered by contamination or defects associated with the optical fiber output end so as to be detectable by the camera.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: June 1, 2021
    Assignee: nLIGHT, Inc.
    Inventors: Aaron Brown, Dahv A. V. Kliner, Scott R. Karlsen, Jeremy Young, Ryan Hawke, David R. Balsley, Ron Stevens
  • Patent number: 10971885
    Abstract: A modular and scalable high-power fiber laser system is configurable to generate 1 kW or more of laser output, and includes one or more separable pump modules separately disposed from each other, each pump module including a plurality of fiber-coupled component pump sources optically combined by one or more fiber-based pump module pump combiners, each pump module providing one or more pump module fiber outputs, and a gain module separately disposed from the one or more separable pump modules and including one or more gain module pump fiber inputs optically coupled to corresponding ones of the pump module fiber outputs, and including a gain fiber optically coupled to the one or more gain module pump fiber inputs, the gain fiber configured to generate a gain module fiber output power scalable in relation to the number and power of said pump module fiber outputs coupled to the gain fiber.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 6, 2021
    Assignee: nLIGHT, Inc.
    Inventor: Dahv A. V. Kliner
  • Patent number: 10971884
    Abstract: An apparatus includes an optical gain fiber having a core, a cladding surrounding the core, the core and cladding defining an optical gain fiber numerical aperture, and a multimode fiber having a core with a larger radius than a radius of the optical gain fiber core, a cladding surrounding the core, the core and cladding of the multimode fiber defining a multimode fiber stable numerical aperture that is larger than the optical gain fiber numerical aperture, the multimode fiber being optically coupled to the optical gain fiber so as to receive an optical beam propagating in the optical gain fiber and to stably propagate the received optical beam in the multimode fiber core with low optical loss associated with the optical coupling.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 6, 2021
    Assignee: NLIGHT, INC.
    Inventors: Roger L. Farrow, Dahv A. V. Kliner
  • Patent number: 10916908
    Abstract: An optical apparatus includes one or more pump sources situated to provide laser pump light, and a gain fiber optically coupled to the one or more pump sources, the gain fiber including an actively doped core situated to produce an output beam, an inner cladding and outer cladding surrounding the doped core and situated to propagate pump light, and a polymer cladding surrounding the outer cladding and situated to guide a selected portion of the pump light coupled into the inner and outer claddings of the gain fiber. Methods of pumping a fiber sources include generating pump light from one or more pump sources, coupling the pump light into a glass inner cladding and a glass outer cladding of a gain fiber of the fiber source such that a portion of the pump light is guided by a polymer cladding surrounding the glass outer cladding, and generating a single-mode output beam from the gain fiber.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: February 9, 2021
    Assignee: NLIGHT, INC.
    Inventors: Dahv A. V. Kliner, Roger L. Farrow
  • Patent number: 10901162
    Abstract: A system includes an optical fiber situated to propagate a laser beam received from a laser source to an output of the optical fiber, a first cladding light stripper optically coupled to the optical fiber and situated to extract at least a portion of forward-propagating cladding light in the optical fiber, and a second cladding light stripper optically coupled to the optical fiber between the first cladding light stripper and the optical fiber output and situated to extract at least a portion of backward-propagating cladding light in the optical fiber.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 26, 2021
    Assignee: nLIGHT, Inc.
    Inventor: Dahv A. V. Kliner
  • Patent number: 10877220
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 29, 2020
    Assignee: NLIGHT, INC.
    Inventors: Ken Gross, Brian Victor, Robert Martinsen, Dahv A. V. Kliner, Roger Farrow
  • Publication number: 20200354261
    Abstract: Fiber bending mechanisms vary beam characteristics by deflecting or bending one or more fibers, by urging portions of one or more fibers toward a fiber shaping surface having a selectable curvature, or by selecting a fiber length that is to be urged toward the fiber shaping surface. In some examples, a fiber is secured to a flexible plate to conform to a variable curvature of the flexible plate. In other examples, a variable length of a fiber is pulled or pushed toward a fiber shaping surface, and the length of the fiber or a curvature of the flexible plate provide modification of fiber beam characteristics.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 12, 2020
    Applicant: NLIGHT, INC.
    Inventors: Aaron Brown, Aaron Ludwig Hodges, Dahv A.V. Kliner
  • Publication number: 20200333640
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Applicant: nLIGHT, Inc.
    Inventors: Dahv A.V. Kliner, Roger Farrow
  • Publication number: 20200319408
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Application
    Filed: January 30, 2018
    Publication date: October 8, 2020
    Applicant: nLIGHT, Inc.
    Inventors: Ken GROSS, Brian VICTOR, Robert MARTINSEN, Dahv A.V. KLINER, Roger FARROW
  • Patent number: 10751834
    Abstract: An optical beam delivery device is formed of optical fibers configured for beam divergence or mode coupling control. An incident optical beam propagates through a first length of fiber, which is coupled to a second length of fiber and has a first refractive index profile (RIP). The first RIP enables, in response to an applied perturbation, modification of the beam characteristics of the incident optical beam to form an adjusted optical beam having modified beam characteristics relative to beam characteristics of the incident optical beam. The second length of fiber is formed with one or more confinement regions defining a second RIP and arranged to confine at least a portion of the adjusted optical beam. The second and first lengths of fiber are tapered in the direction of light beam propagation to control output beam divergence or susceptibility to beam mode coupling in the first length of fiber, respectively.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 25, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Joona Koponen, Roger L. Farrow, Dahv A. V. Kliner
  • Patent number: 10739621
    Abstract: A method of materials processing using an optical beam includes: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP; modifying one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP can be the same as or differ from the second RIP. The modifying of the one or more beam characteristics can include changing the one or more beam characteristics from a first state to a second state. The first state can differ from the second state.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 11, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Brian Victor, Christopher A. Rivera, Dahv A.V. Kliner, Roger Farrow
  • Patent number: 10732440
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 4, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10730785
    Abstract: Fiber bending mechanisms vary beam characteristics by deflecting or bending one or more fibers, by urging portions of one or more fibers toward a fiber shaping surface having a selectable curvature, or by selecting a fiber length that is to be urged toward the fiber shaping surface. In some examples, a fiber is secured to a flexible plate to conform to a variable curvature of the flexible plate. In other examples, a variable length of a fiber is pulled or pushed toward a fiber shaping surface, and the length of the fiber or a curvature of the flexible plate provide modification of fiber beam characteristics.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 4, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Aaron Brown, Aaron Ludwig Hodges, Dahv A. V. Kliner
  • Patent number: RE48899
    Abstract: An example apparatus includes an optical fiber including a core and cladding, the core being situated to propagate an optical beam along a propagation axis associated with the core, and at least one fiber Bragg grating (FBG) situated in the core of the optical fiber, the fiber Bragg grating including a plurality of periodically spaced grating portions situated with respect to the propagation axis so that light associated with Raman scattering is directed out of the core so as to reduce the generation of optical gain associated with stimulated Raman scattering (SRS).
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 25, 2022
    Assignee: nLIGHT, Inc.
    Inventors: Dahv A. V. Kliner, Timothy S. McComb