Patents by Inventor Daisaku Ogawa

Daisaku Ogawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11008930
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: May 18, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Patent number: 10968856
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: April 6, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Publication number: 20210094563
    Abstract: Provided is a vehicle control system capable of, when a swaying phenomenon occurs during towing, preventing the swaying phenomenon from becoming worse due to driving force reduction control based on an increase in steering angle-related value. This vehicle control system comprises a steering wheel (6), a driving force control mechanism to control a driving force of a vehicle (1), and a PCM (16) to control the driving force control mechanism, wherein the PCM (16) is operable, upon an increase in steering angle, to control an engine (4) to reduce an output torque of the engine (4), and, when a reversal of yaw rate of the vehicle (1) is repeated in a situation where the vehicle (1) is performing a towing operation, to restrict the output torque reduction based on the increase in the steering angle.
    Type: Application
    Filed: January 22, 2019
    Publication date: April 1, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisaku OGAWA, Daisuke UMETSU, Setsuya KISHIMURA
  • Publication number: 20210079869
    Abstract: An engine control method includes a step of setting combustion mode in which a first combustion mode in which a mixed gas is combusted by propagating flame or a second combustion mode in which the mixed gas is combusted by self-ignition is selected, a step of setting air-fuel ratio mode in which a lean first air-fuel ratio mode or a second air-fuel ratio mode equal to or richer than a theoretical air-fuel ratio is selected, a step of setting torque reduction in which a torque reduction amount by which a torque generated by an engine is reduced based on a steer angle of a steering wheel, and a suppressing step in which reducing the torque generated by the engine based on the torque reduction amount set in the step of setting torque reduction is suppressed.
    Type: Application
    Filed: January 16, 2019
    Publication date: March 18, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Masahiro NAGOSHI, Yuichiro AKIYA, Yuto MATSUSHIMA, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210062709
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: March 4, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210047978
    Abstract: A control unit performs a vehicle attitude control to reduce a torque generated by an engine when an increase in a steering angle exceeds a standard increase, and a spark ignition controlled compression ignition combustion in a predetermined operating range. In the spark ignition controlled compression ignition combustion, switching of an air-fuel ratio mode is performed between a first air-fuel ratio mode (?>1) is formed and a second air-fuel ratio mode (in which a mixed gas of ??1) is formed. If the switching of the air-fuel ratio mode is requested without the vehicle attitude control, the control unit allows performing the requested switching of the air-fuel ratio mode. In contrast, if the mode switching is requested in a state where the vehicle attitude control is requested, the control unit disallows switching of the air-fuel ratio mode even when the switching of the air-fuel ratio mode is requested.
    Type: Application
    Filed: January 16, 2019
    Publication date: February 18, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Masahiro NAGOSHI, Yuichiro AKIYA, Yuto MATSUSHIMA, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210039504
    Abstract: In a control method for a vehicle and a vehicle controller that add deceleration to a vehicle so as to control a vehicle posture when a turning operation of a steering system is performed, the deceleration is appropriately set on the basis of an operation of a single pedal.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 11, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA
  • Publication number: 20210039624
    Abstract: In a control method for a vehicle that adds deceleration to a vehicle so as to control a vehicle posture when a turning operation of a steering system is performed, the deceleration is appropriately set on the basis of an operation of a single pedal.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 11, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA
  • Publication number: 20200400090
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: December 24, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20200377093
    Abstract: A vehicle system comprises an engine, a motor-generator and a controller. The engine has a combustion mode in which a part of an air-fuel mixture is combusted by spark ignition, and then the remaining air-fuel mixture is combusted by self-ignition. The controller sets a target additional deceleration based on a steering angle, when a steering wheel is turned, and sets an air-fuel ratio of the air-fuel mixture to either one of a first air-fuel ratio and a second air-fuel ratio which is on a lean side, based on an operating state, when the engine performs the combustion mode. The controller controls an ignition timing so as to generate the target additional deceleration in the first air-fuel ratio, and controls a regenerative electric power generation of the motor-generator so as to generate the target additional deceleration in the second air-fuel ratio.
    Type: Application
    Filed: March 20, 2020
    Publication date: December 3, 2020
    Inventors: Yuichiro AKIYA, Chikako OHISA, Keitaro EZUMI, Akira TSUDA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20200369261
    Abstract: A control method for a vehicle has: a step of determining whether a turning operation of a steering system including a steering wheel 6 and the like is performed on the basis of a steering angle that is detected by a steering angle sensor 8; a step of causing a motor generator 4 to generate regenerative power and adding deceleration to a vehicle 1 so as to control a vehicle posture when it is determined that the turning operation of the steering system is performed; and a step of increasing the deceleration, which is added to the vehicle 1 in order to control the vehicle posture, to be higher when the deceleration generated on the vehicle 1 has a first value than when the deceleration generated on the vehicle 1 has a second value that is lower than the first value.
    Type: Application
    Filed: February 14, 2019
    Publication date: November 26, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA
  • Publication number: 20200339107
    Abstract: A vehicle control system comprises: an engine (4); an accelerator position sensor (10) configured to detect the position of an accelerator pedal; a steering device; a PCM (14) configured to generate a deceleration in the vehicle to control the attitude of the vehicle, when a steering angle-related value as a parameter related to a steering angle of the steering device increases; and a brake unit (16) configured to generate a deceleration in the vehicle, independently of reduction of an output torque of the engine, wherein the PCM is configured to generates the deceleration by means of the reduction of the output torque of the engine when a depression of the accelerator pedal is detected by the accelerator position sensor, and to generate the deceleration by the brake unit (16) when the depression of the accelerator pedal is not detected by the accelerator position sensor.
    Type: Application
    Filed: November 29, 2018
    Publication date: October 29, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisaku OGAWA, Osamu SUNAHARA, Yasunori TAKAHARA, Chikako OHISA, Yuichiro AKIYA, Atsushi YAMASAKI, Keiichi HIWATASHI, Daisuke UMETSU
  • Patent number: 10767582
    Abstract: A vehicle control device is provided, which includes an engine, an engine control mechanism configured to control torque generated by the engine, and a processor configured to execute a vehicle attitude controlling module to perform a vehicle attitude control in which the engine control mechanism is controlled to reduce the torque so as to decelerate the vehicle, when a condition that the vehicle is traveling and a steering angle related value that is related to a steering angle of a steering device increases is satisfied, and a preventing module to prevent a combustion frequency of the engine per unit time from falling below a given value while the vehicle attitude controlling module executes the vehicle attitude control.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Daisaku Ogawa, Daisuke Umetsu, Osamu Sunahara, Yasunori Takahara, Yuichiro Akiya, Chikako Ohisa, Atsushi Yamasaki, Keiichi Hiwatashi
  • Patent number: 10688999
    Abstract: A vehicle control device includes a drive source for generating torque as driving force that causes a vehicle to travel, a drive source control mechanism for controlling the torque generation by the drive source, a driving force transmission mechanism for transmitting the torque to vehicle wheels, an engageable element provided in the transmission mechanism, and a processor configured to execute an engagement state change control in which an engagement state of the engageable element is changed, a vehicle attitude controlling module for controlling attitude of the vehicle by driving the drive source control mechanism to reduce the torque so as to decelerate the vehicle, when a condition is satisfied, the condition being that the vehicle is traveling and a steering angle related value increases, and an engagement state change restricting module for restricting the execution of the engagement state change control while the vehicle attitude control is executed.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 23, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Keiichi Hiwatashi, Yasunori Takahara, Daisaku Ogawa, Daisuke Umetsu, Osamu Sunahara, Chikako Ohisa
  • Publication number: 20200070813
    Abstract: A vehicle control device includes an engine (10), an engine control mechanism that controls an engine torque, and a PCM (50) that performs vehicle posture control for generating vehicle deceleration by controlling the engine control mechanism to reduce the engine torque upon satisfaction of a condition that a vehicle is travelling and a steering angle-related value related to a steering angle of a steering device increases. When a driver performs an accelerator operation for reducing an accelerator opening during execution of vehicle posture control, the PCM (50) suppresses reduction of a generated torque of the engine due to the accelerator operation.
    Type: Application
    Filed: March 9, 2018
    Publication date: March 5, 2020
    Applicant: Mazda Motor Corporation
    Inventors: Daisaku OGAWA, Osamu SUNAHARA, Yasunori TAKAHARA, Chikako OHISA, Yuichiro AKIYA, Atsushi YAMASAKI, Keiichi HIWATASHI, Daisuke UMETSU
  • Patent number: 10562537
    Abstract: The vehicle control device is designed to control a vehicle equipped with an engine, and an automatic transmission comprising a torque converter with a lockup clutch. The vehicle control device comprises a controller configured to perform control of changing an engagement degree of the lockup clutch and to, when such a condition that the vehicle is traveling and a steering angle-related value as a parameter related to a steering angle of a steering apparatus of the vehicle increases is satisfied, reduce an output torque of the engine to generate a deceleration of the vehicle to thereby execute a torque reduction control for controlling an attitude of the vehicle. The controller is configured to reduce the output torque of the engine, in accordance with the engagement degree of the lockup clutch controlled by a lockup control.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 18, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Keiichi Hiwatashi, Daisuke Umetsu, Osamu Sunahara, Yasunori Takahara, Daisaku Ogawa, Takahiro Kawamura, Chikako Ohisa
  • Patent number: 10526981
    Abstract: An engine control device is provided, that includes an air amount controller, an ignition timing controller, a basic target torque determinator which determines a basic target torque, a change rate acquirer for acquiring a change rate of a steering operation, a target additional deceleration setter for increasing a target additional deceleration while an increase rate thereof becomes less as the change rate increases, a torque reduction amount determinator for determining an engine torque reduction amount, a final target torque determinator for determining a final target torque, and an actual air amount estimator for estimating an actual air amount introduced into a combustion chamber. The air amount controller determines a target air amount and controls the intake air amount to achieve the target air amount. The ignition timing controller retards the ignition timing more as the actual air amount becomes more excessive with respect to the target amount.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: January 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Chikako Ohisa, Osamu Sunahara, Daisuke Umetsu, Takahiro Kawamura, Yasunori Takahara, Daisaku Ogawa, Takeatsu Ito
  • Patent number: 10525962
    Abstract: A vehicle control device comprises: a downshift control part (51) configured, upon issuance of a downshift request for downshifting an automatic transmission (200), to execute a downshift control of downshifting the automatic transmission (200) and driving an engine torque regulating mechanism to increase an output torque of an engine (10); a vehicle attitude control part (53) configured, upon satisfaction of a condition that the vehicle is traveling and a steering angle-related value pertaining to a steering angle of a steering device increases, to execute a vehicle attitude control of reducing the output torque of the engine (10) to generate deceleration of the vehicle so as to control vehicle attitude; and a downshift suppression part (55) configured, when the vehicle attitude control is executed, to suppress the execution of the downshift control.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: January 7, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Keiichi Hiwatashi, Daisuke Umetsu, Osamu Sunahara, Yasunori Takahara, Chikako Ohisa, Daisaku Ogawa
  • Publication number: 20190389510
    Abstract: The present invention provides a method of controlling a vehicle (1) in which rear road wheels (2b) are driven. The method includes: a step of selecting a first pedal mode in which an acceleration is set based on a depression amount of an accelerator pedal, or a second pedal mode in which the acceleration and a deceleration are set; a step of setting a basic torque based on a driving state of the vehicle; a step of setting an incremental torque to allow the basic torque to be increased in accordance with an increase in steering angle; and a step of generating a torque which is determined by adding the incremental torque to the basic torque, wherein the incremental torque setting step includes setting the incremental torque to different values between when the first pedal mode is selected and when the second pedal mode is selected.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 26, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisaku OGAWA, Daisuke UMETSU, Fuminori KATO
  • Publication number: 20190389466
    Abstract: A method of controlling a vehicle (1) in which rear road wheels (2) are driven by a prime mover (4, 20). This vehicle control method comprises: a basic torque setting step of setting, based on a driving state of the vehicle, a basic torque to be generated by the prime mover; an incremental torque setting step of setting an incremental torque such that the basic torque is increased in accordance with an increase in steering angle of a steering device (26) equipped in the vehicle; and a torque generation step of controlling the prime mover to generate a torque which is determined by increasing the basic torque based on the incremental torque.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 26, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisaku OGAWA, Daisuke UMETSU, Fuminori KATO