Patents by Inventor Daisaku Ogawa

Daisaku Ogawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11401876
    Abstract: A control system for a vehicle is provided, which includes a driving force source configured to generate torque for driving drive wheels, a steering angle related value sensor configured to detect a steering angle related value of a steering device of the vehicle, a grille shutter configured to adjust an opening-and-closing degree of an opening formed in a front surface of a vehicle body, and a controller configured to control the torque to control a vehicle attitude based on the steering angle related value. Based on the steering angle related value, when the controller determines that a turning operation of the steering device is performed, it performs a torque decreasing control for reducing the torque to add deceleration to the vehicle, and when the grille shutter opening is large, the controller increases the torque reduction amount in the torque decreasing control more than when the opening is small.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: August 2, 2022
    Assignee: Mazda Motor Corporation
    Inventors: Daisaku Ogawa, Daisuke Umetsu
  • Publication number: 20220234571
    Abstract: A control system for a vehicle is provided, which includes a driving force source configured to generate torque for driving drive wheels, a steering wheel, a steering angle sensor, and a controller. Based on the detected steering angle, the controller reduces the driving torque to add deceleration to the vehicle when the steering wheel is being turned in one direction, and increases the torque to add acceleration when the steering wheel is being turned back in the other direction. The controller controls the torque, when the steering wheel is being turned in the returning direction from a state where it is turned in the one direction, so as to add forward acceleration until the steering wheel returns to a neutral position, and when the steering wheel is then being turned in the other direction after passing through the neutral position, so as not to add the forward acceleration.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 28, 2022
    Inventors: Daisaku Ogawa, Osamu Sunahara, Daisuke Umetsu
  • Patent number: 11313312
    Abstract: A control unit performs a vehicle attitude control to reduce a torque generated by an engine when an increase in a steering angle exceeds a standard increase, and a spark ignition controlled compression ignition combustion in a predetermined operating range. In the spark ignition controlled compression ignition combustion, switching of an air-fuel ratio mode is performed between a first air-fuel ratio mode (?>1) is formed and a second air-fuel ratio mode (in which a mixed gas of ??1) is formed. If the switching of the air-fuel ratio mode is requested without the vehicle attitude control, the control unit allows performing the requested switching of the air-fuel ratio mode. In contrast, if the mode switching is requested in a state where the vehicle attitude control is requested, the control unit disallows switching of the air-fuel ratio mode even when the switching of the air-fuel ratio mode is requested.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: April 26, 2022
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Masahiro Nagoshi, Yuichiro Akiya, Yuto Matsushima, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Patent number: 11242817
    Abstract: An engine control method includes a step of setting combustion mode in which a first combustion mode in which a mixed gas is combusted by propagating flame or a second combustion mode in which the mixed gas is combusted by self-ignition is selected, a step of setting air-fuel ratio mode in which a lean first air-fuel ratio mode or a second air-fuel ratio mode equal to or richer than a theoretical air-fuel ratio is selected, a step of setting torque reduction in which a torque reduction amount by which a torque generated by an engine is reduced based on a steer angle of a steering wheel, and a suppressing step in which reducing the torque generated by the engine based on the torque reduction amount set in the step of setting torque reduction is suppressed.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: February 8, 2022
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Masahiro Nagoshi, Yuichiro Akiya, Yuto Matsushima, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Publication number: 20220001749
    Abstract: A vehicle driving system that can suppress a difference in effect of vehicle attitude control between the cases where a friction braking force is applied and not applied, is provided. The system includes a rotating electric machine, a battery, a steering apparatus, a steering angle sensor, a brake actuator that applies a friction braking force, a friction braking force sensor, and a controller that sets a deceleration torque based on a steering speed detected by the steering angle sensor and controls the rotating electric machine to apply the deceleration torque to a front wheel of the vehicle, thereby executing a vehicle attitude control. When the friction braking force is applied to the wheels by the brake actuator during the vehicle attitude control, if the friction braking force is large, the controller corrects the deceleration torque to a larger value than when the friction braking force is small.
    Type: Application
    Filed: June 23, 2021
    Publication date: January 6, 2022
    Inventors: Daisaku Ogawa, Daisuke Umetsu, Shinya Morishita
  • Patent number: 11198471
    Abstract: The present invention provides a method of controlling a vehicle (1) in which rear road wheels (2b) are driven. The method includes: a step of selecting a first pedal mode in which an acceleration is set based on a depression amount of an accelerator pedal, or a second pedal mode in which the acceleration and a deceleration are set; a step of setting a basic torque based on a driving state of the vehicle; a step of setting an incremental torque to allow the basic torque to be increased in accordance with an increase in steering angle; and a step of generating a torque which is determined by adding the incremental torque to the basic torque, wherein the incremental torque setting step includes setting the incremental torque to different values between when the first pedal mode is selected and when the second pedal mode is selected.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 14, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Daisaku Ogawa, Daisuke Umetsu, Fuminori Kato
  • Publication number: 20210270333
    Abstract: In the vehicle control system, a controller may perform first regenerative control that causes a motor generator to perform regeneration so as to apply a braking force to a vehicle when the accelerator is off and, when the accelerator is off and a steering is turned, perform second regenerative control that causes the motor generator to perform regeneration so as to apply a braking force to the vehicle in order to control the vehicle attitude by generating a deceleration that corresponds to a steering angle in the vehicle in addition to the first regenerative control.
    Type: Application
    Filed: February 10, 2021
    Publication date: September 2, 2021
    Applicant: Mazda Motor Corporation
    Inventors: Daisaku OGAWA, Daisuke UMETSU, Shinya MORISHITA
  • Patent number: 11091150
    Abstract: A vehicle control device includes an engine (10), an engine control mechanism that controls an engine torque, and a PCM (50) that performs vehicle posture control for generating vehicle deceleration by controlling the engine control mechanism to reduce the engine torque upon satisfaction of a condition that a vehicle is travelling and a steering angle-related value related to a steering angle of a steering device increases. When a driver performs an accelerator operation for reducing an accelerator opening during execution of vehicle posture control, the PCM (50) suppresses reduction of a generated torque of the engine due to the accelerator operation.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: August 17, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Daisaku Ogawa, Osamu Sunahara, Yasunori Takahara, Chikako Ohisa, Yuichiro Akiya, Atsushi Yamasaki, Keiichi Hiwatashi, Daisuke Umetsu
  • Patent number: 11041450
    Abstract: A vehicle control device includes an engine 10 capable of switching between reduced-cylinder operation and all-cylinder operation, an engine control mechanism that controls an engine torque, and a PCM 50 that executes vehicle posture control for generating vehicle deceleration by controlling the engine control mechanism to reduce the engine torque upon satisfaction of a condition that a vehicle is travelling and a steering angle-related value related to a steering angle of a steering device increases. In addition, this PCM 50 permits the execution of the vehicle posture control when an engine rotation speed is more than or equal to a first rotation speed Ne1 and permits the execution of the reduced-cylinder operation of the engine 10 when the engine rotation speed is more than or equal to a second rotation speed Ne2 that is more than the first rotation speed Ne1.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 22, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Daisaku Ogawa, Osamu Sunahara, Yasunori Takahara, Chikako Ohisa, Yuichiro Akiya, Atsushi Yamasaki, Keiichi Hiwatashi, Daisuke Umetsu
  • Patent number: 11008930
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: May 18, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Patent number: 10968856
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: April 6, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Publication number: 20210094563
    Abstract: Provided is a vehicle control system capable of, when a swaying phenomenon occurs during towing, preventing the swaying phenomenon from becoming worse due to driving force reduction control based on an increase in steering angle-related value. This vehicle control system comprises a steering wheel (6), a driving force control mechanism to control a driving force of a vehicle (1), and a PCM (16) to control the driving force control mechanism, wherein the PCM (16) is operable, upon an increase in steering angle, to control an engine (4) to reduce an output torque of the engine (4), and, when a reversal of yaw rate of the vehicle (1) is repeated in a situation where the vehicle (1) is performing a towing operation, to restrict the output torque reduction based on the increase in the steering angle.
    Type: Application
    Filed: January 22, 2019
    Publication date: April 1, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisaku OGAWA, Daisuke UMETSU, Setsuya KISHIMURA
  • Publication number: 20210079869
    Abstract: An engine control method includes a step of setting combustion mode in which a first combustion mode in which a mixed gas is combusted by propagating flame or a second combustion mode in which the mixed gas is combusted by self-ignition is selected, a step of setting air-fuel ratio mode in which a lean first air-fuel ratio mode or a second air-fuel ratio mode equal to or richer than a theoretical air-fuel ratio is selected, a step of setting torque reduction in which a torque reduction amount by which a torque generated by an engine is reduced based on a steer angle of a steering wheel, and a suppressing step in which reducing the torque generated by the engine based on the torque reduction amount set in the step of setting torque reduction is suppressed.
    Type: Application
    Filed: January 16, 2019
    Publication date: March 18, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Masahiro NAGOSHI, Yuichiro AKIYA, Yuto MATSUSHIMA, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210062709
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: March 4, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210047978
    Abstract: A control unit performs a vehicle attitude control to reduce a torque generated by an engine when an increase in a steering angle exceeds a standard increase, and a spark ignition controlled compression ignition combustion in a predetermined operating range. In the spark ignition controlled compression ignition combustion, switching of an air-fuel ratio mode is performed between a first air-fuel ratio mode (?>1) is formed and a second air-fuel ratio mode (in which a mixed gas of ??1) is formed. If the switching of the air-fuel ratio mode is requested without the vehicle attitude control, the control unit allows performing the requested switching of the air-fuel ratio mode. In contrast, if the mode switching is requested in a state where the vehicle attitude control is requested, the control unit disallows switching of the air-fuel ratio mode even when the switching of the air-fuel ratio mode is requested.
    Type: Application
    Filed: January 16, 2019
    Publication date: February 18, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Masahiro NAGOSHI, Yuichiro AKIYA, Yuto MATSUSHIMA, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210039624
    Abstract: In a control method for a vehicle that adds deceleration to a vehicle so as to control a vehicle posture when a turning operation of a steering system is performed, the deceleration is appropriately set on the basis of an operation of a single pedal.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 11, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA
  • Publication number: 20210039504
    Abstract: In a control method for a vehicle and a vehicle controller that add deceleration to a vehicle so as to control a vehicle posture when a turning operation of a steering system is performed, the deceleration is appropriately set on the basis of an operation of a single pedal.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 11, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA
  • Publication number: 20200400090
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: December 24, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20200377093
    Abstract: A vehicle system comprises an engine, a motor-generator and a controller. The engine has a combustion mode in which a part of an air-fuel mixture is combusted by spark ignition, and then the remaining air-fuel mixture is combusted by self-ignition. The controller sets a target additional deceleration based on a steering angle, when a steering wheel is turned, and sets an air-fuel ratio of the air-fuel mixture to either one of a first air-fuel ratio and a second air-fuel ratio which is on a lean side, based on an operating state, when the engine performs the combustion mode. The controller controls an ignition timing so as to generate the target additional deceleration in the first air-fuel ratio, and controls a regenerative electric power generation of the motor-generator so as to generate the target additional deceleration in the second air-fuel ratio.
    Type: Application
    Filed: March 20, 2020
    Publication date: December 3, 2020
    Inventors: Yuichiro AKIYA, Chikako OHISA, Keitaro EZUMI, Akira TSUDA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20200369261
    Abstract: A control method for a vehicle has: a step of determining whether a turning operation of a steering system including a steering wheel 6 and the like is performed on the basis of a steering angle that is detected by a steering angle sensor 8; a step of causing a motor generator 4 to generate regenerative power and adding deceleration to a vehicle 1 so as to control a vehicle posture when it is determined that the turning operation of the steering system is performed; and a step of increasing the deceleration, which is added to the vehicle 1 in order to control the vehicle posture, to be higher when the deceleration generated on the vehicle 1 has a first value than when the deceleration generated on the vehicle 1 has a second value that is lower than the first value.
    Type: Application
    Filed: February 14, 2019
    Publication date: November 26, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daisuke UMETSU, Osamu SUNAHARA, Daisaku OGAWA