Patents by Inventor Daisuke Kawasaki

Daisuke Kawasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999562
    Abstract: A secondary battery capable of suppressing deterioration of rate characteristics and cycle characteristics even under a high-temperature environment is provided. The secondary battery according to an exemplary embodiment is a secondary battery having an electrode element in which a positive electrode and a negative electrode are arranged so as to face each other, an electrolytic solution and an outer package packaging the electrode element and the electrolytic solution, in which the negative electrode is formed by binding a negative electrode active material to a negative electrode collector, with a negative electrode binder; and the electrolytic solution contains an organic sulfurane compound. The secondary battery electrolytic solution according to the exemplary embodiment contains an organic sulfurane compound.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 7, 2015
    Assignee: NEC Corporation
    Inventors: Yoko Hashizume, Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Kazuaki Matsumoto
  • Publication number: 20150093631
    Abstract: The present invention relates to a secondary battery, comprising an electrode element comprising a positive electrode and a negative electrode placed opposite to each other, an electrolyte, and an outer package housing the electrode element and the electrolyte; wherein the negative electrode is formed by binding a negative electrode active material, which comprises a metal (a) capable of being alloyed with lithium, a metal oxide (b) capable of intercalating/deintercalating lithium ions, and a carbon material (c) capable of intercalating/deintercalating lithium ions, to a negative electrode current collector with a negative electrode binder; and the electrolyte comprises a lithium salt dissolved in a solvent comprising 65 vol % or more of a phosphate ester compound, and more than 0 vol % and less than 20 vol % of a fluorinated carbonate compound.
    Type: Application
    Filed: February 4, 2013
    Publication date: April 2, 2015
    Inventors: Daisuke Kawasaki, Kazuaki Matsumoto
  • Patent number: 8956762
    Abstract: In a lithium ion secondary battery including a positive electrode, a separator, a negative electrode, and a package body, the negative electrode includes simple substance silicon as a negative electrode active material, and a negative electrode binder, and is doped with lithium, and the following formulas (1) and (2) are satisfied: 1.2?Ma/Mc?1.9??(1) 1.0<Ma/(Mc+MLi)<1.6??(2) wherein an amount of lithium inserted into the negative electrode until the negative electrode reaches a potential of 0.02 V with respect to metal lithium is Ma (a number of atoms), an amount of lithium released from the positive electrode until the positive electrode reaches a potential of 4.3 V with respect to metal lithium is Mc (a number of atoms), and an amount of lithium with which the negative electrode is doped is MLi (a number of atoms).
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 17, 2015
    Assignees: NEC Corporation, NEC Energy Devices, Ltd.
    Inventors: Ryuichi Kasahara, Jiro Iriyama, Tetsuya Kajita, Hiroo Takahashi, Tatsuji Numata, Daisuke Kawasaki
  • Publication number: 20140377635
    Abstract: The present invention provides an electrolyte solution for a lithium ion secondary battery comprising 65 to 99% by volume of a phosphate ester compound, 0.01 to 30% by volume of a fluorinated carbonate compound, and 0.1 to 10% by volume of a halogenated phosphate ester compound and/or 0.1 to 30% by volume of a solvent having a specific dielectric constant of 15 or more, and a lithium ion secondary battery having the same.
    Type: Application
    Filed: February 25, 2013
    Publication date: December 25, 2014
    Applicant: NEC Corporation
    Inventors: Kazuaki Matsumoto, Kazuhiko Inoue, Daisuke Kawasaki
  • Publication number: 20140076729
    Abstract: The object of an exemplary embodiment of the invention is to provide a negative electrode having excellent cycle property. An exemplary embodiment of the invention a method for doping and dedoping lithium for the first time after a negative electrode for a lithium secondary battery comprising silicon oxide as an active material is produced, comprising doping the lithium within the following current value range (A) and within the following doped amount range (B); current value range (A): a range of a current value in which a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve becomes maximum, wherein the V-dQ/dV curve represents a relationship between voltage V of the negative electrode with respect to a lithium reference electrode and dQ/dV that is a ratio of variation dQ of lithium dedoped amount Q in the negative electrode to variation dV of the voltage V, and doped amount range (B): a range of a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve.
    Type: Application
    Filed: April 6, 2012
    Publication date: March 20, 2014
    Inventors: Jiro Iriyama, Tetsuya Kajita, Daisuke Kawasaki, Tatsuji Numata
  • Publication number: 20140045069
    Abstract: Provided is a lithium secondary cell in which elution of manganese from a manganese olivine compound into an electrolyte is suppressed, a high level of safety is obtained, the charge/discharge cycle efficiency and suppression of leakage of manganese during storage can be maintained over a long period, a long lifespan is obtained, a rapid decrease in cell voltage near the end of discharge is suppressed, and output characteristics are enhanced, when a manganese olivine compound having excellent stability during charge/discharge is used as the principal component in the positive electrode active material. The positive electrode contains a positive electrode active material containing an olivine compound represented by LiMm1-aXaPO4 (where X represents Mg and/or Fe, and a represents a value that satisfies 0?a?0.3) and a lithium nickel oxide represented by LiNi1-bZbO2 (where Z represents one or more selected from Co, Mn, Al, Mg, and V; and b represents a value that satisfies 0?b?0.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 13, 2014
    Inventors: Tatsuji Numata, Tetsuya Kajita, Hiroo Takahashi, Daisuke Kawasaki
  • Publication number: 20140045063
    Abstract: Provided is a negative electrode active material for a lithium secondary cell, the material having the function of a binder for the active material, and being capable of stable reversible reactions with lithium. Also, provided are an extended-life lithium secondary cell having improved energy density and stable charge/discharge, and a method for producing the same. The negative electrode active material for a lithium secondary cell is polyimide represented by formula (1) (wherein R1 and R2 independently denote an alkyl, alkoxy, acyl, phenyl, or phenoxy group).
    Type: Application
    Filed: April 27, 2012
    Publication date: February 13, 2014
    Inventors: Jiro Iriyama, Tetsuya Kajita, Daisuke Kawasaki, Tatsuji Numata, Kazuhiko Inoue
  • Publication number: 20140017572
    Abstract: The object is to provide a lithium ion secondary battery which has an excellent cycle property even in high-temperature environment and which has small volume increase. An exemplary embodiment of the invention is a lithium ion secondary battery, comprising: a positive electrode, a negative electrode comprising a negative electrode active material, and an electrolyte liquid; wherein the electrolyte liquid comprises a chain-type fluorinated ester compound represented by a predetermined formula and a chain-type fluorinated ether compound represented by a predetermined formula; wherein the negative electrode active material comprises metal (a) that can be alloyed with lithium, metal oxide (b) that can absorb and desorb lithium ion, and carbon material (c) that can absorb and desorb lithium ion; and wherein metal (a) is silicon, and metal oxide (b) is silicon oxide.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 16, 2014
    Applicant: NEC CORPORATION
    Inventors: Makiko Uehara, Daisuke Kawasaki, Takehiro Noguchi, Akinobu Nakamura, Kenichi Shimura, Yoko Hashizume
  • Publication number: 20140017559
    Abstract: The object is to provide a secondary battery which has an excellent cycle property even in high-temperature environment and which has small resistance increase even when it is used in high-temperature environment. An exemplary embodiment of the invention is a secondary battery, comprising: a positive electrode, a negative electrode, and an electrolyte liquid; wherein the electrolyte liquid comprises a chain-type fluorinated sulfone compound represented by a predetermined formula.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 16, 2014
    Inventors: Daisuke Kawasaki, Kenichi Shimura, Yoko Hashizume
  • Publication number: 20130266846
    Abstract: A secondary battery having high capacity and satisfactory high-temperature cycle characteristics is provided. A secondary battery according to the exemplary embodiment has an electrode element in which a positive electrode and a negative electrode are arranged so as to face each other, an electrolytic solution and an outer package packaging the electrode element and the electrolytic solution, wherein the negative electrode is formed by binding a negative electrode active material containing at least one of a metal (a) capable of forming an alloy with lithium and a metal oxide (b) capable of absorbing and releasing lithium ions, to a negative electrode collector, with a polyimide or a polyamide-imide serving as a negative electrode binder; and the electrolytic solution contains a phosphazene compound.
    Type: Application
    Filed: August 26, 2011
    Publication date: October 10, 2013
    Applicant: NEC CORPORATION
    Inventors: Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Kazuaki Matsumoto, Yoko Hashizume
  • Publication number: 20130266875
    Abstract: An exemplary embodiment of the present invention is a secondary battery which comprises a negative electrode and a battery electrolyte liquid comprising a supporting salt and a non-aqueous electrolyte solvent; wherein the negative electrode is obtained by pre-forming a SEI coating film on a negative electrode structure which is formed by binding a negative electrode active substance comprising a metal (a). that can be alloyed with lithium, a metal oxide (b) that can absorb and desorb lithium ion and a carbon material (c) that can absorb and desorb lithium ion, to a negative electrode current collector with a negative electrode binder, and wherein the non-aqueous electrolyte solvent contains at least an ionic liquid.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 10, 2013
    Applicant: NEC CORPORATION
    Inventors: Kazuaki Matsumoto, Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Yoko Hashizume
  • Publication number: 20130260218
    Abstract: Provided is a secondary battery having a good battery property at a high temperature. A secondary battery according to an exemplary embodiment of the invention comprises a negative electrode and an electrolyte liquid; wherein the negative electrode is formed by binding a negative electrode active substance on a negative electrode collector with a negative electrode binder; and wherein the electrolyte liquid comprises a compound (A) having a C?S bond. In this embodiment, the negative electrode active substance is formed by covering at least one of a metal (a) that can be alloyed with lithium and a metal oxide (b) that can absorb and desorb a lithium ion with a carbon material (c). Alternatively, the negative electrode active substance comprises a metal (a) that can be alloyed with lithium and the negative electrode binder negative electrode is a polyimide or a polyamide-imide.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 3, 2013
    Applicant: NEC CORPORATION
    Inventors: Yoko Hashizume, Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Kazuaki Matsumoto
  • Publication number: 20130244086
    Abstract: Provided are a negative electrode for a secondary battery realizing satisfactory cycle characteristics and a method for manufacturing the same, and a nonaqueous electrolyte secondary battery having satisfactory cycle characteristics. A negative electrode for a secondary battery formed by bonding a negative electrode active material to a negative electrode collector with a negative electrode binder, in which the negative electrode binder is a polyimide or a polyamide-imide, and the negative electrode collector is a Cu alloy containing at least one metal (a) selected from the group consisting of Sn, In, Mg and Ag and has a conductivity of 50 IACS % or more.
    Type: Application
    Filed: August 25, 2011
    Publication date: September 19, 2013
    Applicant: NEC ENERGY DEVICES, LTD.
    Inventors: Jiro Iriyama, Daisuke Kawasaki, Ryuichi Kasahara, Tetsuya Kajita, Tatsuji Numata
  • Publication number: 20130230762
    Abstract: A secondary battery capable of suppressing deterioration of rate characteristics and cycle characteristics even under a high-temperature environment is provided. The secondary battery according to an exemplary embodiment is a secondary battery having an electrode element in which a positive electrode and a negative electrode are arranged so as to face each other, an electrolytic solution and an outer package packaging the electrode element and the electrolytic solution, in which the negative electrode is formed by binding a negative electrode active material to a negative electrode collector, with a negative electrode binder; and the electrolytic solution contains an organic sulfurane compound. The secondary battery electrolytic solution according to the exemplary embodiment contains an organic sulfurane compound.
    Type: Application
    Filed: August 26, 2011
    Publication date: September 5, 2013
    Applicant: NEC CORPORATION
    Inventors: Yoko Hashizume, Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Kazuaki Matsumoto
  • Publication number: 20130183576
    Abstract: An object is to provide a higher-performance secondary battery, particularly to provide a secondary battery having a low impedance. The present exemplary embodiment is a secondary battery comprising an electrode assembly in which a positive electrode and a negative electrode are arranged to face each other, an electrolyte liquid, and a package accommodating the electrode assembly and the electrolyte liquid, wherein the negative electrode includes a negative electrode active substance containing at least one selected from a metal (a) capable of being alloyed with lithium, and a metal oxide (b) capable of occluding and releasing lithium ions, a negative electrode binder, and a negative electrode current collector; and the electrolyte liquid contains a sulfide compound.
    Type: Application
    Filed: August 26, 2011
    Publication date: July 18, 2013
    Applicant: NEC CORPORATION
    Inventors: Masahiro Suguro, Daisuke Kawasaki, Midori Shimura, Kazuaki Matsumoto, Yoko Hashizume
  • Publication number: 20130164605
    Abstract: An object of the present invention is to provide a secondary battery in which the decomposition of an electrolyte liquid is suppressed and the generation of a gas is reduced, even in the case of using a laminate film as a package.
    Type: Application
    Filed: June 23, 2011
    Publication date: June 27, 2013
    Applicant: NEC CORPORATION
    Inventors: Midori Shimura, Daisuke Kawasaki, Masahiro Suguro, Yoko Hashizume, Kazuaki Matsumoto
  • Publication number: 20130164604
    Abstract: An objection is to provide a high performance secondary battery having good flame retardancy and cycle properties. The present exemplary embodiment provides a secondary battery comprising an electrode assembly in which a positive electrode and a negative electrode are arranged to face each other, an electrolyte liquid and a package accommodating the electrode assembly and the electrolyte liquid, wherein the negative electrode is formed by binding a negative electrode active substance comprising a metal (a) capable of being alloyed with lithium, a metal oxide (b) capable of occluding and releasing lithium ions and a carbon material (c) capable of occluding and releasing lithium ions, to a negative electrode current collector, with a negative electrode binder, and the electrolyte liquid comprises a supporting salt and an electrolytic solvent, the electrolytic solvent comprising at least one phosphate ester compound selected from phosphite esters, phosphonate esters and bisphosphonate esters.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 27, 2013
    Applicant: NEC CORPORATION
    Inventors: Kazuaki Matsumoto, Daisuke Kawasaki, Masahiro Suguro, Midori Shimura, Yoko Hashizume
  • Publication number: 20130164603
    Abstract: The object is to provide a secondary battery with higher performance, and especially to provide a secondary battery having low impedance. An exemplary embodiment of the invention is a secondary battery, comprising an electrode assembly in which a positive electrode and a negative electrode are oppositely disposed, an electrolyte liquid, and a package which encloses the electrode assembly and the electrolyte liquid inside; wherein the negative electrode is formed by binding a negative electrode active substance to a negative electrode collector with a negative electrode binder; and wherein the electrolyte liquid comprises a fluorine-containing cyclic ether compound.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 27, 2013
    Applicant: NEC CORPORATION
    Inventors: Masahiro Suguro, Daisuke Kawasaki, Midori Shimura, Kazuaki Matsumoto, Yoko Hashizume
  • Publication number: 20130157117
    Abstract: Provided is a lithium ion secondary battery in which a high-energy type negative electrode is used, the lithium ion secondary battery having high capacity and excellent thermal stability. A secondary battery according to the present embodiment comprises: an electrode element having a positive electrode and a negative electrode opposed each other; an electrolyte; and an outer casing containing the electrode element and the electrolyte, wherein the negative electrode comprises a negative electrode active material, which includes at least one of a metal (a) capable of alloying with lithium and a metal oxide (b) capable of occluding and releasing lithium ions, is bonded to a negative electrode current collector by a negative electrode bonding agent, and the electrolyte comprises 70˜99 vol % of a phosphoric acid ester compound and 1˜15 vol % of a fluorinated carbonate compound.
    Type: Application
    Filed: August 18, 2011
    Publication date: June 20, 2013
    Applicant: NEC CORPORATION
    Inventors: Kazuaki Matsumoto, Daisuke Kawasaki
  • Publication number: 20130157120
    Abstract: The object of an exemplary embodiment of the invention is to provide a secondary battery with a high performance in which the generation of the swelling can be suppressed and in which the cycle property is excellent. An exemplary embodiment of the invention is a secondary battery, comprising an electrode assembly in which a positive electrode and a negative electrode are oppositely disposed, an electrolyte liquid, and a package which encloses the electrode assembly and the electrolyte liquid inside; wherein the negative electrode is formed by binding a negative electrode active substance, which comprises metal (a) that can be alloyed with lithium, metal oxide (b) that can absorb and desorb lithium ion, and carbon material (c) that can absorb and desorb lithium ion, to a negative electrode collector with at least one selected from polyimides and a polyamide-imides; and wherein the electrolyte liquid comprises a compound represented by any one of predetermined formulae.
    Type: Application
    Filed: June 23, 2011
    Publication date: June 20, 2013
    Applicant: NEC CORPORATION
    Inventors: Midori Shimura, Daisuke Kawasaki, Masahiro Suguro, Yoko Hashizume, Kazuaki Matsumoto