Patents by Inventor Dale A. Webb

Dale A. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937524
    Abstract: A method includes obtaining, by the treatment system configured to implement a machine learning (ML) algorithm, one or more images of a region of an agricultural environment near the treatment system, wherein the one or more images are captured from the region of a real-world where agricultural target objects are expected to be present, determining one or more parameters for use with the ML algorithm, wherein at least one of the one or more parameters is based on one or more ML models related to identification of an agricultural object, determining a real-world target in the one or more images using the ML algorithm, wherein the ML algorithm is at least partly implemented using the one or more processors of the treatment system, and applying a treatment to the target by selectively activating the treatment mechanism based on a result of the determining the target.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: March 26, 2024
    Assignee: Verdant Robotics, Inc.
    Inventors: Gabriel Thurston Sibley, Lorenzo Ibarria, Curtis Dale Garner, Patrick Christopher Leger, Dustin James Webb
  • Patent number: 9058529
    Abstract: Radio-frequency identification-(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: June 16, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: James G. Renfro, Jr., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8731405
    Abstract: Radio-frequency identification—(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 20, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: James G. Renfro, Jr., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8649684
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Raymond A. Casterline, Gary L. Coakley, Vladimir M. Cotfas, Eric M. Sadowski, Michael Sauer, Dale A. Webb, Steven C. Kapp, Rajeshkannan Palanisamy, David R. Peters, Michael B. Webb
  • Publication number: 20130328666
    Abstract: Radio-frequency identification-(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Corning Cable Systems
    Inventors: James G. Renfro, JR., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8532492
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). In one embodiment, calibration of communication downlinks and communication uplinks is performed to compensate for signal strength losses in the system.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 10, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Rajeshkannan Palanisamy, David R. Peters, Eric M. Sadowski, Michael Sauer, Dale A. Webb
  • Publication number: 20120134673
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). In one embodiment, calibration of communication downlinks and communication uplinks is performed to compensate for signal strength losses in the system.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 31, 2012
    Inventors: Rajeshkannan Palanisamy, David R. Peters, Eric M. Sadowski, Michael Sauer, Dale A. Webb
  • Publication number: 20120134666
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 31, 2012
    Inventors: Raymond A. Casterline, Gary L. Coakley, Vladimir M. Cotfas, Eric M. Sadowski, Michael Sauer, Dale A. Webb, Steven C. Kapp, Rajeshkannan Palanisamy, David R. Peters, Michael B. Webb
  • Publication number: 20100052863
    Abstract: Radio-frequency identification—(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Inventors: James G. Renfro, JR., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 4068988
    Abstract: In the embodiment of the invention as depicted, the same comprising a rotary compressor, a channel or passageway is provided in the machine to communicate two variable volume chambers which are formed by rotary pistons and walls of the compressor housing, to equalize pressure in the two chambers. The purpose here is to prevent one chamber from pre-compressing before the other, so that a small pocket formed between the rotors by the inter-engaging teeth will not come up to pressure, and be expanded back into the inlet, to avoid a clearance loss and a waste of horsepower.
    Type: Grant
    Filed: July 30, 1976
    Date of Patent: January 17, 1978
    Assignee: Ingersoll-Rand Company
    Inventors: Paul Dale Webb, Larry Neil Willover
  • Patent number: 4050701
    Abstract: The novel seal comprises a non-contacting, floating ring seal formed, by injection molding, of carbon fiber-reinforced polyphenylene sulfide, for use in fluid-sealing a rotary steel shaft. The reinforced polyphenylene sulfide exhibits thermal expansion which is substantially equal to that of steel; thus a predetermined radial clearance is maintained, between the seal and the shaft without the need for a circumferential steel band, or the like, shrunk onto the seal.
    Type: Grant
    Filed: November 26, 1976
    Date of Patent: September 27, 1977
    Assignee: Ingersoll-Rand Company
    Inventor: Paul Dale Webb