Patents by Inventor Dale R. Liff

Dale R. Liff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210106148
    Abstract: A security gate for a retail store shelf having one or more products includes a header and at least one hinge arranged in a horizontal alignment with the header. A rigid frame is connected to the header with the at least one hinge and a guard is positioned across the rigid frame, the guard preventing a user from removing the products. A latching mechanism connects the rigid frame to the header and urges a customer to use two hands to open the security gate.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Applicant: SENNCO SOLUTIONS, INC.
    Inventors: Daniel L. HORVATH, Christopher Alan MARSZALEK, Dale R. LIFF, George R. LIFF
  • Publication number: 20210083522
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 18, 2021
    Inventors: DAVID W. BAARMAN, JOSHUA K. SCHWANNECKE, NEIL W. KUYVENHOVEN, ESAI E. UMENEI, DALE R. LIFF, ANDREW C. ZEIK, MARK A. BLAHA, JASON L. AMISTADI, ROBERT D. GRUICH
  • Patent number: 10862335
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system with power accounting. Parasitic metal in proximity to the primary unit can be more accurately detected by accounting for changes in known power losses during operation. The amount of power loss during inductive power supply transfer in an inductive power supply system can vary depending on the alignment of the primary unit and the secondary device. The amount of power loss during inductive power supply transfer can also vary as a function of changes in the operating frequency of the switching circuit in the primary unit or as a function of changes in the secondary device load.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: December 8, 2020
    Assignee: Philips I.P. Ventures B.V.
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, Esai E. Umenei, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Jason L. Amistadi, Robert D. Gruich
  • Publication number: 20200250299
    Abstract: A method of establishing security monitoring functionality on a device on retail display includes obtaining, by a processor of a server computer, a mobile device management (MDM) startup message from the device, determining, by the processor, whether the device is enrolled for MDM supervision, and if the device is enrolled for the MDM supervision, downloading, by the processor to the device, configuration data to support the MDM supervision and implementation of the security monitoring functionality.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Inventors: Brian Peacock, Dale R. Liff, Stephen M. Strom, George Liff
  • Publication number: 20200252430
    Abstract: A method of monitoring a device on retail display includes receiving, by a processor of a server computer, a message from the device indicative of whether security instructions stored in a memory of the device are being executed on the device, determining, by the processor, whether time elapsed since the message was received exceeds a threshold, and, if the time elapsed exceeds the threshold, sending, by the processor, a command to automatically cause the device to enter into a locked state.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Inventors: Brian Peacock, Dale R. Liff, Stephen M. Strom, George Liff
  • Publication number: 20190180581
    Abstract: A system for monitoring a product on display includes a display pedestal configured to secure the product to a fixture to which the display pedestal is mounted. The display pedestal includes a tether to allow movement of the product relative to the fixture. The system includes a sensor system including a capacitive sensor pad. The capacitive sensor pad is supported by the fixture and configured to detect the movement of the product via the tether.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 13, 2019
    Inventors: Christopher Marszalek, Dale R. Liff, Joseph Ryan, Jr., Joseph Ryan, III
  • Patent number: 10277279
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 30, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 10250083
    Abstract: The present invention relates to wireless power supplies adapted to supply power and communicate with one or more remote devices. The systems and methods of the present invention generally relate to a communication timing system that may ensure information being communicated does not overlap with that of another device, preventing data collisions and information from going undetected. With information being communicated in a way that addresses or avoids potential communication issues in multiple device systems, the wireless power supply may control operation to effectively supply wireless power.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 2, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Merdad Veiseh, Dale R. Liff, Mark A. Blaha, Jason L. Amistadi
  • Publication number: 20190066466
    Abstract: A method of registering a security sensor device with a product device to be protected via the security sensor device includes obtaining sensor identification data for the security sensor device, the sensor identification data being indicative of the security sensor device, obtaining product identification data for the product device, the product identification data being indicative of the product device, and generating registration data for the security sensor device and the product device, the registration data associating the security sensor device and the product device.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Christopher Marszalek, Dale R. Liff, Sean P. Behan, Brian Peacock, Stephen M. Strom
  • Patent number: 10217337
    Abstract: A method of registering a security sensor device with a product device to be protected via the security sensor device includes obtaining sensor identification data for the security sensor device, the sensor identification data being indicative of the security sensor device, obtaining product identification data for the product device, the product identification data being indicative of the product device, and generating registration data for the security sensor device and the product device, the registration data associating the security sensor device and the product device.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 26, 2019
    Assignee: Sennco Solutions, Inc.
    Inventors: Christopher Marszalek, Dale R. Liff, Sean P. Behan, Brian Peacock, Stephen M. Strom
  • Publication number: 20180260587
    Abstract: An electronic device configured for retail display includes a persistent memory on which boot instructions are stored, a storage device on which security monitoring instructions are stored, and a processor configured to execute the boot instructions during a boot sequence to initiate execution of the security monitoring instructions. The processor is further configured, via the execution of the security monitoring instructions, to monitor the retail display of the electronic device for a security trigger event and, upon detection of the trigger event, lock a user interface of the electronic device.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 13, 2018
    Inventors: Brian Peacock, Dale R. Liff
  • Publication number: 20170063165
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, Esai E. Umenei, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Jason L. Amistadi, Robert D. Gruich
  • Patent number: 9524822
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 20, 2016
    Assignee: Access Business Group International LLC
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, Esai E. Umenei, Dale R. Liff, Mark A. Blaha, Robert D. Gruich
  • Publication number: 20160294445
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 9407332
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: August 2, 2016
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 9344155
    Abstract: A system and method for mitigating interference between two or more inductive systems. Interference can be mitigated by, in response to an interference causing event, temporarily adjusting operation of one or more of the inductive sub-systems to reduce interference. A controller can receives communication from multiple inductive systems and instruct the systems to operate so as to reduce interference. The inductive systems can coordinate to operate out of phase with respect to one another to reduce interference. Communication from a data transfer inductive system can be mimicked by another inductive system so that both systems transmit the communication. Interference between multiple inductive systems can be mitigated by specific physical positioning of the transmitters of the inductive sub-systems.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: May 17, 2016
    Assignee: Access Business Group International LLC
    Inventors: Benjamin C. Moes, Neil W. Kuyvenhoven, Hai D. Nguyen, Joshua K. Schwannecke, Dale R. Liff, Andrew Zup
  • Patent number: 9154002
    Abstract: A wireless power supply system that detects communications in the input power to the switching circuit. In this aspect of the invention, the wireless power supply includes a detector for generating a signal indicative of the current in the input to the switching circuitry, a band-pass filter for filtering the detected signal, an amplifier for amplifying the filtered signal, a filter for filtering the amplified signal and a comparator for converting the final signal into a stream of high and low signals that can be passed to a controller for processing as binary data stream.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 6, 2015
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Scott A. Mollema, David W. Baarman, Joshua K. Schwannecke, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Robert D. Gruich, Jason L. Amistadi
  • Patent number: 9106269
    Abstract: A wireless power transfer system with a remote device having a communication transmitter configured to initiate communications with a framing pulse to prevent noise from being mistaken for legitimate data. The communication system may employ a bi-phase modulation scheme, and the framing pulse may be generated to present no transitions in the communication signal during a specified period of time. The communication transmitter may produce the framing pulse by applying a load in the remote device. The present invention also provides a method for transmitting communication signals in a wireless power supply system including the general steps of: (a) preceding each communication with a framing pulse configured to present a bit sequence that does not exist in legitimate data communications, (b) maintaining the framing pulse for a period of time sufficient to effectively “reset” the communications receiver and (c) transmitting communications following the framing pulse.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: August 11, 2015
    Assignee: Access Business Group International LLC
    Inventors: Benjamin C. Moes, Joseph S. Melton, Jr., Dale R. Liff, Andrew C. Zeik
  • Publication number: 20150194814
    Abstract: The present invention relates to wireless power supplies adapted to supply power and communicate with one or more remote devices. The systems and methods of the present invention generally relate to a communication timing system that may ensure information being communicated does not overlap with that of another device, preventing data collisions and information from going undetected. With information being communicated in a way that addresses or avoids potential communication issues in multiple device systems, the wireless power supply may control operation to effectively supply wireless power.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 9, 2015
    Applicant: Access Business Group International LLC
    Inventors: Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Merdad Veiseh, Dale R. Liff, Mark A. Blaha, Jason L. Amistadi
  • Publication number: 20140349573
    Abstract: A system and method for mitigating interference between two or more inductive systems. Interference can be mitigated by, in response to an interference causing event, temporarily adjusting operation of one or more of the inductive sub-systems to reduce interference. A controller can receives communication from multiple inductive systems and instruct the systems to operate so as to reduce interference. The inductive systems can coordinate to operate out of phase with respect to one another to reduce interference. Communication from a data transfer inductive system can be mimicked by another inductive system so that both systems transmit the communication. Interference between multiple inductive systems can be mitigated by specific physical positioning of the transmitters of the inductive sub-systems.
    Type: Application
    Filed: January 7, 2013
    Publication date: November 27, 2014
    Applicant: Access Business Group International LLC
    Inventors: Benjamin C. Moes, Neil W. Kuyvenhoven, Hai D. Nguyen, Joshua K. Schwannecke, Dale R. Liff, Andrew Zup