Patents by Inventor Dale R. Liff

Dale R. Liff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140254696
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Application
    Filed: April 4, 2014
    Publication date: September 11, 2014
    Applicant: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 8731116
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: May 20, 2014
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Publication number: 20140077616
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 20, 2014
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, Esai E. Umenei, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Jason L. Amistadi, Robert D. Gruich
  • Patent number: 8620484
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 31, 2013
    Assignee: Access Business Group International LLC
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, A. Esai Umenei, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Jason L. Amistadi, Robert D. Gruich
  • Patent number: 8558714
    Abstract: A detection system includes one or more base stations and one or more sensors. The base station defines a detection area and is configured to transmit a detection signal at a first frequency. The base station is further configured to facilitate selective variation of the detection area. The sensor is configured to detect the detection signal and transmit a communication signal at a second frequency in response to the detection signal. Movement of the sensor between the detection area and an area outside of the detection area affects detection of the detection signal. The first frequency is less than the second frequency.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: October 15, 2013
    Assignee: Avid Technologies, Inc.
    Inventors: Dale R. Liff, Richard E. Benson
  • Publication number: 20130039395
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Application
    Filed: February 6, 2012
    Publication date: February 14, 2013
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 8259428
    Abstract: A voltage clamp protection circuit to protect against overvoltage conditions where there is insufficient current to blow a fuse. The voltage clamp protection circuit includes a voltage clamp and a thermal cutoff. The voltage clamp clamps any overvoltage to a clamping voltage. If an overvoltage condition persists for too long the voltage clamp dissipates a sufficient amount of heat to activate the thermal cutoff creating an open circuit that protects the rest of the circuit. The voltage clamp protection circuit may be used in combination with a variety of other protection circuits to provide increased protection.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: September 4, 2012
    Assignee: Access Business Group International LLC
    Inventors: Scott A. Mollema, David W. Baarman, Andrew C. Zeik, Dale R. Liff, Mark A. Blaha
  • Publication number: 20120149303
    Abstract: A wireless power transfer system with a remote device having a communication transmitter configured to initiate communications with a framing pulse to prevent noise from being mistaken for legitimate data. The communication system may employ a bi-phase modulation scheme, and the framing pulse may be generated to present no transitions in the communication signal during a specified period of time. The communication transmitter may produce the framing pulse by applying a load in the remote device. The present invention also provides a method for transmitting communication signals in a wireless power supply system including the general steps of: (a) preceding each communication with a framing pulse configured to present a bit sequence that does not exist in legitimate data communications, (b) maintaining the framing pulse for a period of time sufficient to effectively “reset” the communications receiver and (c) transmitting communications following the framing pulse.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 14, 2012
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Benjamin C. Moes, Joseph S. Melton, JR., Dale R. Liff, Andrew C. Zeik
  • Publication number: 20110204711
    Abstract: A wireless power supply system that detects communications in the input power to the switching circuit. In this aspect of the invention, the wireless power supply includes a detector for generating a signal indicative of the current in the input to the switching circuitry, a band-pass filter for filtering the detected signal, an amplifier for amplifying the filtered signal, a filter for filtering the amplified signal and a comparator for converting the final signal into a stream of high and low signals that can be passed to a controller for processing as binary data stream.
    Type: Application
    Filed: January 24, 2011
    Publication date: August 25, 2011
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Matthew J. Norconk, Scott A. Mollema, David W. Baarman, Joshua K. Schwannecke, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Robert D. Gruich, Jason L. Amistadi
  • Publication number: 20110196544
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 11, 2011
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: David W. BAARMAN, Joshua K. SCHWANNECKE, Neil W. KUYVENHOVEN, A. Esai UMENEI, Dale R. LIFF, Andrew C. ZEIK, Mark A. BLAHA, Jason L. AMISTADI, Robert D. GRUICH
  • Publication number: 20090268356
    Abstract: A voltage clamp protection circuit to protect against overvoltage conditions where there is insufficient current to blow a fuse. The voltage clamp protection circuit includes a voltage clamp and a thermal cutoff. The voltage clamp clamps any overvoltage to a clamping voltage. If an overvoltage condition persists for too long the voltage clamp dissipates a sufficient amount of heat to activate the thermal cutoff creating an open circuit that protects the rest of the circuit. The voltage clamp protection circuit may be used in combination with a variety of other protection circuits to provide increased protection.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 29, 2009
    Applicant: Access Business Group International LLC
    Inventors: Scott A. Mollema, David W. Baarman, Andrew C. Zeik, Dale R. Liff, Mark A. Blaha