Patents by Inventor Daniel Bedau

Daniel Bedau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190006585
    Abstract: An apparatus for non-volatile memory, and more specifically a ReRAM device with a buried resistive memory cell. The memory cell includes a first contact disposed on a substrate, an active layer, a second contact, a first diffused zone disposed within the active layer, a second diffused zone disposed within the active layer, and an active switching zone disposed within the active layer in between the first diffused zone and the second diffused zone. In one embodiment, the active zone may be doped by diffusion or ion implantation and/or may be fabricated utilizing a self-aligned process. In another embodiment, the memory cell may combine a deep implant and shallow diffusion well to create the active zone. The vertically and laterally isolated buried resistive memory cell concentrates the electric field away from the edges of the device and eliminates the effects of interface impurities and contaminants.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventor: Daniel BEDAU
  • Publication number: 20180308900
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device comprises a substrate, and an active region having resistance properties that can be modified to store one or more data bits, the active region comprising region of the substrate with a chemically altered reduction level to establish a resistive memory property in the substrate. The resistive memory device comprises terminals formed into the substrate and configured to couple the active region to associated electrical contacts.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventor: Daniel BEDAU
  • Publication number: 20180301507
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device includes an active region having resistance properties that can be modified to store one or more data bits in the resistive memory device, and at least one sidewall portion of the active region comprising a dopant configured to suppress conductance paths in the active region proximate to the at least one sidewall portion. The resistive memory device includes terminals configured to couple the active region to associated electrical contacts.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 18, 2018
    Inventor: Daniel BEDAU
  • Patent number: 10069068
    Abstract: An apparatus for non-volatile memory, and more specifically a ReRAM device with a buried resistive memory cell. The memory cell includes a first contact disposed on a substrate, an active layer, a second contact, a first diffused zone disposed within the active layer, a second diffused zone disposed within the active layer, and an active switching zone disposed within the active layer in between the first diffused zone and the second diffused zone. In one embodiment, the active zone may be doped by diffusion or ion implantation and/or may be fabricated utilizing a self-aligned process. In another embodiment, the memory cell may combine a deep implant and shallow diffusion well to create the active zone. The vertically and laterally isolated buried resistive memory cell concentrates the electric field away from the edges of the device and eliminates the effects of interface impurities and contaminants.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: September 4, 2018
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Daniel Bedau
  • Publication number: 20180211703
    Abstract: The present disclosure, in various embodiments, describes three-dimensional (3D) vertical resistive random access memory (ReRAM) structures. In one embodiment, a memory device includes a resistive memory element and a selector coupled in series with the resistive memory element. A turn-on voltage of the selector is greater than a bias voltage of the memory device in an unselected state such that the selector remains in a turn-off state when the memory device is unselected, and the selector is configured to have substantially the same resistance in both a forward bias direction and a reverse bias direction in a turn-on state.
    Type: Application
    Filed: May 5, 2017
    Publication date: July 26, 2018
    Inventors: Won Ho Choi, Jay Kumar, Daniel Bedau, Zvonimir Z. Bandic, Seung-Hwan Song
  • Patent number: 10020346
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device comprises a substrate, and an active region having resistance properties that can be modified to store one or more data bits, the active region comprising region of the substrate with a chemically altered reduction level to establish a resistive memory property in the substrate. The resistive memory device comprises terminals formed into the substrate and configured to couple the active region to associated electrical contacts.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: July 10, 2018
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Daniel Bedau
  • Patent number: 9953705
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive random access memory (ReRAM) array is provided. The ReRAM array includes a plurality of memory cells each comprising resistive memory material formed into a layer of a substrate, with resistance properties of the resistive memory material corresponding to data bits stored by the memory cells. The ReRAM array also includes a plurality of interconnect features each comprising conductive material between adjacent memory cells formed into the layer of the substrate, and gate portions coupled onto the memory cells and configured to individually alter the resistance properties of the resistive memory material of associated memory cells responsive to at least voltages applied to the gate portions.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 24, 2018
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Daniel Bedau
  • Publication number: 20180004264
    Abstract: To provide enhanced power distribution in integrated circuits, solid state memory arrays, or other solid state devices, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, an integrated circuit power distribution system is provided. The system includes a first power distribution bus coupled to a current source and a threshold bridge element, and a second power distribution bus coupled to one or more target devices and the threshold bridge element. The threshold bridge element comprises a bridge material with properties that pass current responsive to application of a threshold voltage across the bridge material.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Mac D. Apodaca, Daniel Bedau, Daniel Shepard
  • Publication number: 20170365641
    Abstract: A three terminal ReRAM device, which combines a Schottky barrier transistor and a Schottky barrier ReRAM into a single device is provided. The Schottky transistor memory device includes a source region, a drain region, and a gate electrode. Between the source and drain regions, the ReRAM material is present. The ReRAM material can include a metal oxide, such as zinc or hafnium oxide. A Schottky barrier forms naturally between the drain region and the ReRAM material. As voltage is applied to the gate electrode and the source region, the Schottky barrier breaks down, leading to the formation of a filament across the drain region and the ReRAM material. The filament is non-volatile and short-circuits the reverse-biased barrier, keeping the device in a low resistance state. The filament can be removed by reversing the polarity of the voltage such that the device switches back to a high resistance state.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Inventor: Daniel BEDAU
  • Publication number: 20170365605
    Abstract: The present disclosure generally relates to an apparatus for high density memory with integrated logic. A three terminal ReRAM device, which includes a p-n junction and a Schottky barrier, that can switch from a low resistive state to a high resistive state is provided. The Schottky transistor memory device includes a source region, a drain region, a first p-type or n-type oxide layer disposed between the source and drain regions, a second p-type or n-type oxide layer, and a gate electrode. As voltage is applied to the gate electrode, the Schottky barrier breaks down, leading to the formation of a filament. The filament is non-volatile and short-circuits the reverse-biased barrier, keeping the device in a low resistance state. Removing the filament by reversing the polarity of the voltage switches the device back to a high resistance state, allowing for the memory state to be readout through the gate electrode.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Inventor: Daniel BEDAU
  • Publication number: 20170338281
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device comprises a substrate, and an active region having resistance properties that can be modified to store one or more data bits, the active region comprising region of the substrate with a chemically altered reduction level to establish a resistive memory property in the substrate. The resistive memory device comprises terminals formed into the substrate and configured to couple the active region to associated electrical contacts.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 23, 2017
    Inventor: Daniel Bedau
  • Publication number: 20170324033
    Abstract: An apparatus for non-volatile memory, and more specifically a ReRAM device with a buried resistive memory cell. The memory cell includes a first contact disposed on a substrate, an active layer, a second contact, a first diffused zone disposed within the active layer, a second diffused zone disposed within the active layer, and an active switching zone disposed within the active layer in between the first diffused zone and the second diffused zone. In one embodiment, the active zone may be doped by diffusion or ion implantation and/or may be fabricated utilizing a self-aligned process. In another embodiment, the memory cell may combine a deep implant and shallow diffusion well to create the active zone. The vertically and laterally isolated buried resistive memory cell concentrates the electric field away from the edges of the device and eliminates the effects of interface impurities and contaminants.
    Type: Application
    Filed: May 3, 2016
    Publication date: November 9, 2017
    Inventor: Daniel BEDAU
  • Patent number: 9812184
    Abstract: A high speed, low power method to control and switch the magnetization direction of a magnetic region in a magnetic device for memory cells using spin polarized electrical current. The magnetic device comprises a pinned magnetic layer, a reference magnetic layer with a fixed magnetization direction and a free magnetic layer with a changeable magnetization direction. The magnetic layers are separated by insulating non-magnetic layers. A current can be applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, can be measured to read out the information stored in the device.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: November 7, 2017
    Assignee: NEW YORK UNIVERSITY
    Inventors: Andrew Kent, Daniel Bedau, Huanlong Liu
  • Publication number: 20170317142
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device includes an active region having resistance properties that can be modified to store one or more data bits in the resistive memory device, and at least one sidewall portion of the active region comprising a dopant configured to suppress conductance paths in the active region proximate to the at least one sidewall portion. The resistive memory device includes terminals configured to couple the active region to associated electrical contacts.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventor: Daniel Bedau
  • Publication number: 20170317280
    Abstract: The present disclosure generally relates to an apparatus for a three terminal nonvolatile memory cell. Specifically, a three terminal nonvolatile bipolar junction transistor. The bipolar junction memory device includes a collector layer, a base layer disposed on the collector layer, an emitter layer disposed on the base layer, and a conductive anodic filament extending from the collector layer to the base layer. As current is applied to the transistor and a voltage is applied between P-N junction of the collector layer and the base layer, a conductive anodic filament (CAF) forms. The CAF is non-volatile and short circuits the reverse-biased P-N junction barrier thus keeping the device in a low-resistive state. Removing the CAF switches the device back to a high resistive state. Thus, a new type of semiconductor device advantageously combines computation and memory to form a flux-linkage modulated memory cell.
    Type: Application
    Filed: June 21, 2017
    Publication date: November 2, 2017
    Inventor: Daniel BEDAU
  • Publication number: 20170316824
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a multi-layer resistive random access memory (ReRAM) array is provided. Active layers of the array each comprise a plurality of ReRAM elements that each include a gate portion having a gate terminal and a memory cell portion with a source terminal and drain terminal. Insulating layers of the array alternate with the active layers and each comprise an insulating material between adjacent active layers. Wordlines span through more than one layer of the array, with each of the wordlines comprising a column of memory cell portions coupled via source terminals and drain terminals of column-associated ReRAM elements. Bitlines each span through an associated active layer of the array, with each of the bitlines comprising a row of gate portions coupled via at least gate terminals of row-associated ReRAM elements.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventor: Daniel Bedau
  • Publication number: 20170317141
    Abstract: An apparatus for high density memory with integrated logic. Specifically, a three terminal resistive random access memory (ReRAM) device having Schottky barriers that can switch from a low resistive state to a high resistive state is provided. The Schottky transistor memory device includes an insulating layer, a source region disposed on the insulating layer, a drain region disposed on the insulating layer, a binary or complex oxide memory material, a gate dielectric layer, and a gate electrode. As voltage is applied the Schottky barrier breaks down leading to the formation of a conductive anodic filament (CAF). The CAF is non-volatile and short-circuits the reverse-biased barrier thus keeping the device in a low resistance state. Removing the CAF switches the device back to a high resistance state. Thus, a new type of semiconductor device advantageously combines computation and memory further providing for very high density NAND chains.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 2, 2017
    Inventor: Daniel BEDAU
  • Publication number: 20170309332
    Abstract: To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive random access memory (ReRAM) array is provided. The ReRAM array includes a plurality of memory cells each comprising resistive memory material formed into a layer of a substrate, with resistance properties of the resistive memory material corresponding to data bits stored by the memory cells. The ReRAM array also includes a plurality of interconnect features each comprising conductive material between adjacent memory cells formed into the layer of the substrate, and gate portions coupled onto the memory cells and configured to individually alter the resistance properties of the resistive memory material of associated memory cells responsive to at least voltages applied to the gate portions.
    Type: Application
    Filed: April 26, 2016
    Publication date: October 26, 2017
    Inventor: Daniel Bedau
  • Publication number: 20170236570
    Abstract: A high speed, low power method to control and switch the magnetization direction of a magnetic region in a magnetic device for memory cells using spin polarized electrical current. The magnetic device comprises a pinned magnetic layer, a reference magnetic layer with a fixed magnetization direction and a free magnetic layer with a changeable magnetization direction. The magnetic layers are separated by insulating non-magnetic layers. A current can be applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, can be measured to read out the information stored in the device.
    Type: Application
    Filed: August 31, 2016
    Publication date: August 17, 2017
    Applicant: New York University
    Inventors: Andrew Kent, Daniel Bedau, Huanlong Liu
  • Publication number: 20170221540
    Abstract: A method and apparatus for controlled switching of a magnetoresistive random access memory device is disclosed herein. The method includes delivering a current to a magnetoresistive random access memory device, wherein the MRAM device is in a first state, measuring a voltage drop across the magnetoresistive random access memory device in real-time with a resistance detector, wherein a voltage drop beyond a threshold voltage equates to switching from a first state to a second state, the first state different from the second state, determining whether the MRAM device has switched from the first state to the second state, and stopping the current delivered to the magnetoresistive random access memory device.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 3, 2017
    Inventors: Daniel BEDAU, Patrick M. BRAGANCA, Kurt Allan RUBIN