Patents by Inventor Daniel G. Georgiev

Daniel G. Georgiev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030549
    Abstract: A hybrid edge termination structure and method of forming the same. The hybrid edge termination structure in accordance with the invention is based on a junction termination extension (JTE) architecture, but includes an additional Layer of guard ring (GR) structures to further implement the implantation of dopants into the structure. The hybrid edge termination structure of the invention has a three-Layer structure, with a top Layer and a bottom Layer each having a constant dopant concentration in the lateral direction, and a middle Layer consisting of a plurality of spatially defined alternating regions that exhibit the electrical properties of either the top or bottom layer. By including the second layer, a discretized varying charge profile can be obtained that approximates the varying charge profile obtained using tapered edge termination but with easier manufacturing and lower cost.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, Mona A. Ebrish, Andrew D. Koehler, Alan G. Jacobs, Matthew A. Porter, Karl D. Hobart, Prakash Pandey, Tolen Michael Nelson, Daniel G. Georgiev, Raghav Khanna, Michael Robert Hontz
  • Patent number: 10967463
    Abstract: Semiconductor layers useable for minimizing or preventing the growth of metal whiskers, as well as devices and methods utilizing the same and kits for making the same, are described. The semiconductor layers may be nickel oxide layers. In some embodiments, an electronic device may include a substrate, a first metal layer on the substrate, a semiconductor layer comprising NiO on the first metal layer, and a second metal layer on the semiconductor layer. In some embodiments, an electronic device may include a substrate, a semiconductor layer comprising NiO directly on the substrate, and a metal layer directly on the semiconductor layer. A method for making an electronic device may include depositing a semiconductor layer comprising NiO on a substrate, and depositing a metal layer on the semiconductor layer, where the semiconductor layer substantially prevents the growth of whiskers on the metal layer.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: April 6, 2021
    Assignee: The University of Toledo
    Inventors: Vamsi Borra, Daniel G. Georgiev, Srikanth Itapu
  • Publication number: 20190314937
    Abstract: Semiconductor layers useable for minimizing or preventing the growth of metal whiskers, as well as devices and methods utilizing the same and kits for making the same, are described.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 17, 2019
    Applicant: The University of Toledo
    Inventors: Vamsi Borra, Daniel G. Georgiev, Srikanth Itapu
  • Patent number: 7799707
    Abstract: Methods of forming a gated, self-aligned nano-structures for electron extraction are disclosed. One method of forming the nano-structure comprises irradiating a first surface of a thermally conductive laminate to melt an area across the first surface of the laminate. The laminate comprises a thermally conductive film and a patterned layer disposed on the first surface of the film. The patterned layer has a pattern formed therethrough, defining the area for melting. The film is insulated at a second surface thereof to provide two-dimensional heat transfer laterally in plane of the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form the nano-structure having an apical nano-tip for electron emission centered in an electrically isolated aperture that serves as a gate electrode to control electron extraction in a gated field emitter device.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: September 21, 2010
    Assignee: Wayne State University
    Inventors: Ronald J. Baird, Daniel G. Georgiev, Ivan Avrutsky, Golam Newaz, Gregory W. Auner
  • Publication number: 20090142936
    Abstract: Methods of forming a gated, self-aligned nano-structures for electron extraction are disclosed. One method of forming the nano-structure comprises irradiating a first surface of a thermally conductive laminate to melt an area across the first surface of the laminate. The laminate comprises a thermally conductive film and a patterned layer disposed on the first surface of the film. The patterned layer has a pattern formed therethrough, defining the area for melting. The film is insulated at a second surface thereof to provide two-dimensional heat transfer laterally in plane of the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form the nano-structure having an apical nano-tip for electron emission centered in an electrically isolated aperture that serves as a gate electrode to control electron extraction in a gated field emitter device.
    Type: Application
    Filed: August 1, 2008
    Publication date: June 4, 2009
    Applicant: WAYNE STATE UNIVERSITY
    Inventors: RONALD J. BAIRD, Daniel G. Georgiev, Ivan Avrutsky, Golam Newaz, Gregory W. Auner
  • Patent number: 7402445
    Abstract: Methods of forming a nano-structure for electron extraction are disclosed. One method of forming a nano-structure comprises irradiating an area on a first surface of a thermal conductive film to melt the area across the film. The film is insulated on a second surface to provide two-dimensional heat transfer across the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form a nano-structure having an apical nano-tip for electron extraction.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: July 22, 2008
    Assignee: Wayne State University
    Inventors: Daniel G. Georgiev, Ivan Avrutsky, Ronald J. Baird, Golam Newaz, Gregory W. Auner