Patents by Inventor Daniel J. Blomberg

Daniel J. Blomberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150097265
    Abstract: A device includes a semiconductor substrate, emitter and collector regions disposed in the semiconductor substrate, having a first conductivity type, and laterally spaced from one another, and a composite base region disposed in the semiconductor substrate, having a second conductivity type, and including a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20150097238
    Abstract: A device includes a semiconductor substrate, source and drain regions disposed in the semiconductor substrate, having a first conductivity type, and laterally spaced from one another, and a composite body region disposed in the semiconductor substrate and having a second conductivity type. The composite body region includes a first well region that extends laterally across the source and drain regions and a second well region disposed in the first well region. The drain region is disposed in the second well region such that charge carriers flow from the first well region into the second well region to reach the drain region. The second well region includes dopant of the first conductivity type to have a lower net dopant concentration level than the first well region. A pocket may be disposed in a drain extension region and configured to establish a depletion region along an edge of a gate structure.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Zhihong Zhang, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 8946041
    Abstract: Embodiments for forming improved bipolar transistors are provided, manufacturable by a CMOS IC process. The improved transistor comprises an emitter having first and second portions of different depths, a base underlying the emitter having a central portion of a first base width underlying the first portion of the emitter, a peripheral portion having a second base width larger than the first base width partly underlying the second portion of the emitter, and a transition zone of a third base width and lateral extent lying laterally between the first and second portions of the base, and a collector underlying the base. The gain of the transistor is larger than a conventional bipolar transistor made using the same CMOS process. By adjusting the lateral extent of the transition zone, the properties of the improved transistor can be tailored to suit different applications without modifying the underlying CMOS IC process.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8946860
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a collector region of semiconductor material having a first conductivity type, a base region of semiconductor material within the collector region, the base region having a second conductivity type opposite the first conductivity type, and a doped region of semiconductor material having the second conductivity type, wherein the doped region is electrically connected to the base region and the collector region resides between the base region and the doped region. In exemplary embodiments, the dopant concentration of the doped region is greater than a dopant concentration of the collector region to deplete the collector region as the electrical potential of the base region exceeds that of the collector region.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8946862
    Abstract: Methods are provided for forming a device that includes merged vertical and lateral transistors with collector regions of a first conductivity type between upper and lower base regions of opposite conductivity type that are Ohmically coupled via intermediate regions of the same conductivity type and to the base contact. The emitter is provided in the upper base region and the collector contact is provided in outlying sinker regions extending to the thin collector regions and an underlying buried layer. As the collector voltage increases part of the thin collector regions become depleted of carriers from the top by the upper and from the bottom by the lower base regions. This clamps the collector regions' voltage well below the breakdown voltage of the PN junction formed between the buried layer and the lower base region. The gain and Early Voltage are increased and decoupled and a higher breakdown voltage is obtained.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20150004768
    Abstract: A method of fabricating a transistor includes forming a field isolation region in a substrate. After forming the field isolation region, dopant is implanted in a first region of a substrate for formation of a drift region. A drain region is formed in a second region of the substrate. The first and second regions laterally overlap to define a conduction path for the transistor. The first region does not extend laterally across the second region.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20140363945
    Abstract: Bipolar transistors and methods for fabricating bipolar transistors are provided. In one embodiment, the method includes the step or process of providing a substrate having therein a semiconductor base region of a first conductivity type and first doping density proximate an upper substrate surface. A multilevel collector structure of a second opposite conductivity type is formed in the base region. The multilevel collector includes a first collector part extending to a collector contact, a second collector part Ohmically coupled to the first collector part underlying the upper substrate surface by a first depth, a third collector part laterally spaced apart from the second collector part and underlying the upper substrate surface by a second depth and having a first vertical thickness, and a fourth collector part Ohmically coupling the second and third collector parts and having a second vertical thickness different than the first vertical thickness.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventors: XIN LIN, DANIEL J. BLOMBERG, JIANG-KAI ZUO
  • Patent number: 8853780
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate, a channel region in the semiconductor substrate between the source and drain regions through which charge carriers flow during operation from the source region to the drain region, and a drift region in the semiconductor substrate, on which the drain region is disposed, and through which the charge carriers drift under an electric field arising from application of a bias voltage between the source and drain regions. A PN junction along the drift region includes a first section at the drain region and a second section not at the drain region. The drift region has a lateral profile that varies such that the first section of the PN junction is shallower than the second section of the PN junction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8847358
    Abstract: A bipolar transistor having an upper surface, comprises a multilevel collector structure formed in a base region of opposite conductivity type and having a first part of a first vertical extent coupled to a collector contact, an adjacent second part having a second vertical extent a third part of a third vertical extent and desirably of a depth different from a depth of the second part, coupled to the second part by a fourth part desirably having a fourth vertical extent less than the third vertical extent. A first base region portion overlies the second part, a second base region portion separates the third part from an overlying base contact region, and other base region portions laterally surround and underlie the multilevel collector structure. An emitter proximate the upper surface is laterally spaced from the multilevel collector structure. This combination provides improved gain, Early Voltage and breakdown voltages.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J Blomberg, Jiang-Kai Zuo
  • Publication number: 20140264724
    Abstract: An integrated semiconductor device includes a substrate of a first conductivity type, a buried layer located over the substrate, an isolated region located over a first portion of the buried layer, and an isolation trench located around the isolated region. A punch-through structure is located around at least a portion of the isolation trench. The punch-through structure includes a second portion of the buried layer, a first region located over the second portion of the buried layer, the first region having a second conductivity type, and a second region located over the first region, the second region having the first conductivity type.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Xu Cheng, Daniel J. Blomberg, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20140231961
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a collector region of semiconductor material having a first conductivity type, a base region of semiconductor material within the collector region, the base region having a second conductivity type opposite the first conductivity type, and a doped region of semiconductor material having the second conductivity type, wherein the doped region is electrically connected to the base region and the collector region resides between the base region and the doped region. In exemplary embodiments, the dopant concentration of the doped region is greater than a dopant concentration of the collector region to deplete the collector region as the electrical potential of the base region exceeds that of the collector region.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140187014
    Abstract: Methods are provided for forming a device that includes merged vertical and lateral transistors with collector regions of a first conductivity type between upper and lower base regions of opposite conductivity type that are Ohmically coupled via intermediate regions of the same conductivity type and to the base contact. The emitter is provided in the upper base region and the collector contact is provided in outlying sinker regions extending to the thin collector regions and an underlying buried layer. As the collector voltage increases part of the thin collector regions become depleted of carriers from the top by the upper and from the bottom by the lower base regions. This clamps the collector regions' voltage well below the breakdown voltage of the PN junction formed between the buried layer and the lower base region. The gain and Early Voltage are increased and decoupled and a higher breakdown voltage is obtained.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: XIN LIN, DANIEL J. BLOMBERG, JIANG-KAI ZUO
  • Publication number: 20140134820
    Abstract: Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Inventors: XIN LIN, DANIEL J. BLOMBERG, HONGNING YANG, JIANG-KAI ZUO
  • Publication number: 20140110814
    Abstract: A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a buried cathode extension region (104) formed under a RESURF anode extension region (106, 107) such that the cathode extension region (104) extends beyond the cathode contact (131) to be sandwiched between upper and lower regions (103, 106, 107) of opposite conductivity type.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 8669640
    Abstract: An improved device (20) is provided, comprising, merged vertical (251) and lateral transistors (252), comprising thin collector regions (34) of a first conductivity type sandwiched between upper (362) and lower (30) base regions of opposite conductivity type that are Ohmically coupled via intermediate regions (32, 361) of the same conductivity type and to the base contact (38). The emitter (40) is provided in the upper base region (362) and the collector contact (42) is provided in outlying sinker regions (28) extending to the thin collector regions (34) and an underlying buried layer (28). As the collector voltage increases part of the thin collector regions (34) become depleted of carriers from the top by the upper (362) and from the bottom by the lower (30) base regions. This clamps the thin collector regions' (34) voltage well below the breakdown voltage of the PN junction formed between the buried layer (28) and the lower base region (30).
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140061858
    Abstract: A method of fabricating a bipolar transistor including emitter and base regions having first and second conductivity types, respectively, includes forming an isolation region at a surface of a semiconductor substrate, the isolation region having an edge that defines a boundary of an active area of the emitter region, and implanting dopant of the second conductivity type through a mask opening to form the base region in the semiconductor substrate. The mask opening spans the edge of the isolation region such that an extent to which the dopant passes through the isolation region varies laterally to establish a variable depth contour of the base region.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiangkai Zuo
  • Publication number: 20140054747
    Abstract: A bipolar transistor having an upper surface, comprises a multilevel collector structure formed in a base region of opposite conductivity type and having a first part of a first vertical extent coupled to a collector contact, an adjacent second part having a second vertical extent a third part of a third vertical extent and desirably of a depth different from a depth of the second part, coupled to the second part by a fourth part desirably having a fourth vertical extent less than the third vertical extent. A first base region portion overlies the second part, a second base region portion separates the third part from an overlying base contact region, and other base region portions laterally surround and underlie the multilevel collector structure. An emitter proximate the upper surface is laterally spaced from the multilevel collector structure. This combination provides improved gain, Early Voltage and breakdown voltages.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg (Dan), Jiang-Kai Zuo
  • Patent number: 8648443
    Abstract: Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20140015090
    Abstract: A higher breakdown voltage transistor has separated emitter, base contact, and collector contact. Underlying the emitter and the base contact are, respectively, first and second base portions of a first conductivity type. Underlying and coupled to the collector contact is a collector region of a second, opposite, conductivity type, having a central portion extending laterally toward, underneath, or beyond the base contact and separated therefrom by the second base portion. A floating collector region of the same conductivity type as the collector region underlies and is separated from the emitter by the first base portion. The collector and floating collector regions are separated by a part of the semiconductor (SC) region in which the base is formed. A further part of the SC region in which the base is formed, laterally bounds or encloses the collector region.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140001545
    Abstract: A multi-region (81, 83) lateral-diffused-metal-oxide-semiconductor (LDMOS) device (40) has a semiconductor-on-insulator (SOI) support structure (21) on or over which are formed a substantially symmetrical, laterally internal, first LDMOS region (81) and a substantially asymmetric, laterally edge-proximate, second LDMOS region (83). A deep-trench isolation (DTI) wall (60) substantially laterally terminates the laterally edge-proximate second LDMOS region (83). Electric field enhancement and lower source-drain breakdown voltages (BVDSS) exhibited by the laterally edge-proximate second LDMOS region (83) associated with the DTI wall (60) are avoided by providing a doped SC buried layer region (86) in the SOI support structure (21) proximate the DTI wall (60), underlying a portion of the laterally edge-proximate second LDMOS region (83) and of opposite conductivity type than a drain region (31) of the laterally edge-proximate second LDMOS region (83).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Daniel J. Blomberg, Jiang-Kai Zuo