Patents by Inventor Daniel J. SIEGWART

Daniel J. SIEGWART has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123076
    Abstract: Described herein are novel lipid compositions comprising unsaturated dendrimers and methods of synthesis of unsaturated dendrimers. The lipid composition can comprise an ionizable cationic lipid, a phospholipid, and a selective organ targeting lipid. Also described herein are pharmaceutical formulations comprising an unsaturated dendrimer, a lipid composition, and a therapeutic agent. Further described in here are methods of mRNA delivery comprising a lipid composition and a therapeutic agent. Further described herein are high-potency dosage forms of a therapeutic formulated with a lipid composition.
    Type: Application
    Filed: December 9, 2021
    Publication date: April 18, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Sang M. LEE, Daniel J. SIEGWART
  • Publication number: 20240116859
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: November 13, 2023
    Publication date: April 11, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240116860
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: November 13, 2023
    Publication date: April 11, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240083842
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240043378
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: June 15, 2023
    Publication date: February 8, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240025848
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 25, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240010614
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 11, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Patent number: 11858884
    Abstract: Disclosed herein are methods for modulating an amount or activity of a gene or a gene product in a cell. The methods herein may comprise contacting a cell with a therapeutic agent assembled with a lipid composition, which lipid composition may comprise a dendrimer or dendron which may comprise one or more degradable diacyl group, in which may result in modulating the amount or activity of the gene or the gene product in the cell. The therapeutic agent modulating a gene or gene product in a cell may be sufficient to treat a disease or disorder in a subject. Further disclosed herein are pharmaceutical compositions, kits, and lipid compositions for modulating an amount or activity of a gene or a gene product in a cell.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: January 2, 2024
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Daniel J. Siegwart, Kejin Zhou
  • Publication number: 20230320994
    Abstract: Ionizable phospholipids and compositions and methods relating thereof are provided herein. In some aspects, the ionizable phospholipids provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: August 23, 2021
    Publication date: October 12, 2023
    Inventors: Daniel J. SIEGWART, Shuai LIU, Xueliang YU, Qiang CHENG, Tuo WEI
  • Patent number: 11766408
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: September 26, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Qiang Cheng, Tuo Wei, Daniel J. Siegwart
  • Patent number: 11685710
    Abstract: The present disclosure provides one or more amino lipids such as an amino lipids containing a sulfonic acid or sulfonic acid derivative of the formulas: wherein the variables are as defined herein. These amino lipids may be used in compositions with one or more helper lipids and a nucleic acid therapeutic agent. These compositions may be used to treat a disease or disorder such as cancer, cystic fibrosis, or other genetic diseases.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: June 27, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Daniel J. Siegwart, Jason B. Miller
  • Patent number: 11648209
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: May 16, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Qiang Cheng, Tuo Wei, Daniel J. Siegwart
  • Patent number: 11648210
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Grant
    Filed: September 4, 2022
    Date of Patent: May 16, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Qiang Cheng, Tuo Wei, Daniel J. Siegwart
  • Patent number: 11590085
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 28, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Qiang Cheng, Tuo Wei, Daniel J. Siegwart
  • Publication number: 20230026843
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Application
    Filed: September 4, 2022
    Publication date: January 26, 2023
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Qiang CHENG, Tuo WEI, Daniel J. SIEGWART
  • Patent number: 11542229
    Abstract: The present disclosure provides one or more amino lipids such as an amino lipids containing a sulfonic acid or sulfonic acid derivative of the formulas: wherein the variables are as defined herein. These amino lipids may be used in compositions with one or more helper lipids and a nucleic acid therapeutic agent. These compositions may be used to treat a disease or disorder such as cancer, cystic fibrosis, or other genetic diseases.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: January 3, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Daniel J. Siegwart, Jason B. Miller
  • Publication number: 20220387337
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 8, 2022
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Qiang CHENG, Tuo WEI, Daniel J. SIEGWART
  • Patent number: 11510880
    Abstract: The present disclosure provides compositions which shown preferential targeting or delivery of a nucleic acid composition to a particular organ. In some embodiments, the composition comprises a steroid or sterol, an ionizable cationic lipid, a phospholipid, a PEG lipid, and a permanently cationic lipid which may be used to deliver a nucleic acid.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: November 29, 2022
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Qiang Cheng, Tuo Wei, Daniel J. Siegwart
  • Publication number: 20220325255
    Abstract: Embodiments of the instant disclosure relate to novel antiviral compositions and methods for treating viral infections. In accordance with these embodiments, antiviral compositions can include at least one mRNA encoding for a TRIM7 protein encapsulated into a lipid nanoparticle (LNP). In other embodiments, methods of making antiviral compositions are disclosed as well as methods of administering a composition having at least one mRNA encoding for a TRIM7 protein encapsulated into LNP into a subject.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 13, 2022
    Inventors: John W. Schoggins, Wenchun Fan, Daniel J. Siegwart, Qiang Cheng
  • Publication number: 20220257792
    Abstract: Disclosed herein are methods for modulating an amount or activity of a gene or a gene product in a cell. The methods herein may comprise contacting a cell with a therapeutic agent assembled with a lipid composition, which lipid composition may comprise a dendrimer or dendron which may comprise one or more degradable diacyl group, in which may result in modulating the amount or activity of the gene or the gene product in the cell. The therapeutic agent modulating a gene or gene product in a cell may be sufficient to treat a disease or disorder in a subject. Further disclosed herein are pharmaceutical compositions, kits, and lipid compositions for modulating an amount or activity of a gene or a gene product in a cell.
    Type: Application
    Filed: December 30, 2021
    Publication date: August 18, 2022
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU