Patents by Inventor Daniel Meron Pinkas

Daniel Meron Pinkas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7150994
    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise one or more subsystems, including for example, a flow-partitioning subsystem for providing a different flow rate to each of the four or more reactors, a pressure-partitioning subsystem for providing a different reaction pressure in the reaction cavity of each of the four or more reactors, and a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the one or more subsystems can comprise at least one set of four or more flow restrictors, each of the four or more flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: December 19, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: H. Sam Bergh, James R. Engstrom, Shenheng Guan, Daniel Meron Pinkas, Kyle W. Self
  • Patent number: 7122156
    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the feed composition subsystem comprises at least one set of four or more feed-component flow restrictors, each of the four or more feed-component flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: October 17, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: H. Sam Bergh, James R. Engstrom, Shenheng Guan, Daniel Meron Pinkas, Kyle W. Self
  • Publication number: 20040139784
    Abstract: Gas chromatographs of the invention generally comprise four or more analysis channels. Specifically, four or more gas chromatography columns are configured for parallel analysis of four or more gaseous samples with detection being effected using a microdetector array comprising four or more microdetectors. In one embodiment, the four or more microdetectors 510 are microfabricated detectors, and are integrally formed with a substrate or with one or more microchip bodies mounted on a substrate. In a preferred embodiment, a microdetector array comprises four or more thermal conductivity detectors having one or more thin-film detection filaments. A preferred heated environment for highly parallel gas chromatographs is also disclosed.
    Type: Application
    Filed: November 20, 2003
    Publication date: July 22, 2004
    Applicant: Symyx Technologies, Inc.
    Inventors: Ravi Srinivasan, Daniel Meron Pinkas, Shenheng Guan, Michael Myslovaty, Mikhail Spitkovsy, James R. Engstrom, H. Sam Bergh
  • Patent number: 6701774
    Abstract: Gas chromatographs of the invention generally comprise four or more analysis channels. Specifically, four or more gas chromatography columns are configured for parallel analysis of four or more gaseous samples with detection being effected using a microdetector array comprising four or more microdetectors. In one embodiment, the four or more microdetectors 510 are microfabricated detectors, and are integrally formed with a substrate or with one or more microchip bodies mounted on a substrate. In a preferred embodiment, a microdetector array comprises four or more thermal conductivity detectors having one or more thin-film detection filaments. A preferred heated environment for highly parallel gas chromatographs is also disclosed.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: March 9, 2004
    Assignee: Symyx Technologies, Inc.
    Inventors: Ravi Srinivasan, Daniel Meron Pinkas, Shenheng Guan, Michael Myslovaty, Michael Spitkovsky, James R. Engstrom, H. Sam Bergh
  • Publication number: 20020048536
    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise one or more subsystems, including for example, a flow-partitioning subsystem for providing a different flow rate to each of the four or more reactors, a pressure-partitioning subsystem for providing a different reaction pressure in the reaction cavity of each of the four or more reactors, and a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the one or more subsystems can comprise at least one set of four or more flow restrictors, each of the four or more flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.
    Type: Application
    Filed: March 7, 2001
    Publication date: April 25, 2002
    Inventors: H. Sam Bergh, James R. Engstrom, Shenheng Guan, Daniel Meron Pinkas, Kyle W. Self
  • Publication number: 20020045265
    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the feed composition subsystem comprises at least one set of four or more feed-component flow restrictors, each of the four or more feed-component flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.
    Type: Application
    Filed: March 8, 2001
    Publication date: April 18, 2002
    Inventors: H. Sam Bergh, James R. Engstrom, Shenheng Guan, Daniel Meron Pinkas, Kyle W. Self
  • Publication number: 20020014106
    Abstract: Gas chromatographs of the invention generally comprise four or more analysis channels. Specifically, four or more gas chromatography columns are configured for parallel analysis of four or more gaseous samples with detection being effected using a microdetector array comprising four or more microdetectors. In one embodiment, the four or more microdetectors 510 are microfabricated detectors, and are integrally formed with a substrate or with one or more microchip bodies mounted on a substrate. In a preferred embodiment, a microdetector array comprises four or more thermal conductivity detectors having one or more thin-film detection filaments. A preferred heated environment for highly parallel gas chromatographs is also disclosed.
    Type: Application
    Filed: March 7, 2001
    Publication date: February 7, 2002
    Inventors: Ravi Srinivasan, Daniel Meron Pinkas, Shenheng Guan, Michael Myslovaty, Mikhail Spitkovsky, James R. Engstrom, H. Sam Bergh