Patents by Inventor Daniel P. Cunnane

Daniel P. Cunnane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864472
    Abstract: A method for etching a surface including obtaining a structure comprising a plurality of nanowires on or above a substrate and a dielectric layer on or above the nanowires, wherein the dielectric layer comprises protrusions formed by the underlying nanowires; reacting a surface of the dielectric layer with a reactant, comprising a gas or a plasma, to form a reactive layer on the dielectric layer, wherein the reactive layer comprises a chemical compound including the reactant and elements of the dielectric layer and the reactive layer comprises sidewalls defined by the protrusions; and selectively etching the reactive layer, wherein the etching etches the protrusions laterally through the sidewalls so as to planarize the surface and remove or shrink the protrusions.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: January 2, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Harold Frank Greer, Andrew D. Beyer, Matthew D. Shaw, Daniel P. Cunnane
  • Publication number: 20230120408
    Abstract: A method of making a film comprising depositing magnesium and boron on a substrate; depositing a capping layer to form a capped film; and cooling the capped film so as to form a magnesium diboride film. The depositing may comprise tuning a ratio of the Mg to the B so as to tailor a resistivity of the magnesium diboride film anywhere in the range 10 ??*cm???500 m?*cm, and so as to form the magnesium diboride film comprising a superconductive film having a critical temperature greater than 10K or in a range 10K-40K. The magnesium diboride film can have an area greater than or equal to a circular area having a diameter of at least 4 inches; a thickness and sheet resistance varying by less than 10% over an entirety of the area; and a surface roughness less than 2 nm over the entirety of the area.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 20, 2023
    Applicant: California Institute of Technology
    Inventors: Changsub Kim, Daniel P. Cunnane
  • Publication number: 20220013706
    Abstract: A method for etching a surface including obtaining a structure comprising a plurality of nanowires on or above a substrate and a dielectric layer on or above the nanowires, wherein the dielectric layer comprises protrusions formed by the underlying nanowires; reacting a surface of the dielectric layer with a reactant, comprising a gas or a plasma, to form a reactive layer on the dielectric layer, wherein the reactive layer comprises a chemical compound including the reactant and elements of the dielectric layer and the reactive layer comprises sidewalls defined by the protrusions; and selectively etching the reactive layer, wherein the etching etches the protrusions laterally through the sidewalls so as to planarize the surface and remove or shrink the protrusions.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 13, 2022
    Applicant: California Institute of Technology
    Inventors: Harold Frank Greer, Andrew D. Beyer, Matthew D. Shaw, Daniel P. Cunnane