Patents by Inventor Daniel R. Noguera

Daniel R. Noguera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210261993
    Abstract: Recombinant microorganisms configured for enhanced production of compounds such as 2-pyrone-4,6-dicarboxylic acid (PDC) and methods of using the recombinant microorganisms for the production of these compounds. The recombinant microorganisms include one or more modifications that reduce 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) cis-trans isomerase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) methyl esterase activity, and/or vanillate/3-O-methylgallate O-demethylase activity. The recombinant microorganisms can be used to generate PDC from media comprising plant-derived phenolics, such as syringyl phenolics, guaiacyl phenolics, and p-hydroxyphenyl phenolics. The plant-derived phenolics can be derived from pretreated lignin, including depolymerized lignin or other chemically altered lignin.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 26, 2021
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Daniel R. Noguera, Timothy James Donohue, Jose Perez, Wayne S. Kontur, German Eduardo Umana Chapeton
  • Patent number: 11028418
    Abstract: Recombinant microorganisms configured for enhanced production of compounds such as 2-pyrone-4,6-dicarboxylic acid (PDC) and methods of using the recombinant microorganisms for the production of these compounds. The recombinant microorganisms include one or more modifications that reduce 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) cis-trans isomerase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) methyl esterase activity, and/or vanillate/3-O-methylgallate O-demethylase activity. The recombinant microorganisms can be used to generate PDC from media comprising plant-derived phenolics, such as syringyl phenolics, guaiacyl phenolics, and p-hydroxyphenyl phenolics. The plant-derived phenolics can be derived from pretreated lignin, including depolymerized lignin or other chemically altered lignin.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: June 8, 2021
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Daniel R. Noguera, Timothy James Donohue, Jose Perez, Wayne S. Kontur, German Eduardo Umana Chapeton
  • Publication number: 20210095265
    Abstract: Enzymes for depolymerizing lignin. The enzymes include dehydrogenases, ?-etherases, and glutathione lyases. The dehydrogenases can comprise one or more or LigD, LigO, LigN, and LigL. The ?-etherases can comprise one or more of LigE, LigF, LigP, and BaeA. The glutathione lyases can comprise any one or more of LigG and a number of non-stereospecific, optionally recombinant glutathione lyases derived from Sphingobium sp. SYK-6, Novosphingobium aromaticivorans, Escherichia coli, Streptococcus sanguinis, Phanerochaete chrysosporium, and other microorganisms. The enzymes can be combined in compositions and/or used in methods of processing lignin or other aromatic compounds in vitro.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 1, 2021
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Timothy James Donohue, Daniel Leo Gall, Wayne S. Kontur, Hoon Kim, John Ralph, Daniel R. Noguera, Brian Fox, Craig Bingman
  • Patent number: 10829745
    Abstract: Enzymes for depolymerizing lignin. The enzymes include dehydrogenases, ?-etherases, and glutathione lyases. The dehydrogenases can comprise one or more or LigD, LigO, LigN, and LigL. The ?-etherases can comprise one or more of LigE, LigF, LigP, and BaeA. The glutathione lyases can comprise any one or more of LigG and a number of non-stereospecific, optionally recombinant glutathione lyases derived from Sphingobium sp. SYK-6, Novosphingobium aromaticivorans, Escherichia coli, Streptococcus sanguinis, Phanerochaete chrysosporium, and other microorganisms. The enzymes can be combined in compositions and/or used in methods of processing lignin or other aromatic compounds in vitro.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 10, 2020
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Timothy James Donohue, Daniel Leo Gall, Wayne S. Kontur, Hoon Kim, John Ralph, Daniel R. Noguera, Brian Fox, Craig Bingman
  • Publication number: 20200263215
    Abstract: Recombinant microorganisms configured for enhanced production of compounds such as 2-pyrone-4,6-dicarboxylic acid (PDC) and methods of using the recombinant microorganisms for the production of these compounds. The recombinant microorganisms include one or more modifications that reduce 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) cis-trans isomerase activity, 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) methyl esterase activity, and/or vanillate/3-O-methylgallate O-demethylase activity. The recombinant microorganisms can be used to generate PDC from media comprising plant-derived phenolics, such as syringyl phenolics, guaiacyl phenolics, and p-hydroxyphenyl phenolics. The plant-derived phenolics can be derived from pretreated lignin, including depolymerized lignin or other chemically altered lignin.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 20, 2020
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Daniel R. Noguera, Timothy James Donohue, Jose Perez, Wayne S. Kontur, German Eduardo Umana Chapeton
  • Publication number: 20190048329
    Abstract: Enzymes for depolymerizing lignin. The enzymes include dehydrogenases, ?-etherases, and glutathione lyases. The dehydrogenases can comprise one or more or LigD, LigO, LigN, and LigL. The ?-etherases can comprise one or more of LigE, LigF, LigP, and BaeA. The glutathione lyases can comprise any one or more of LigG and a number of non-stereospecific, optionally recombinant glutathione lyases derived from Sphingobium sp. SYK-6, Novosphingobium aromaticivorans, Escherichia coli, Streptococcus sanguinis, Phanerochaete chrysosporium, and other microorganisms. The enzymes can be combined in compositions and/or used in methods of processing lignin or other aromatic compounds in vitro.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 14, 2019
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Timothy James Donohue, Daniel Leo Gall, Wayne S. Kontur, Hoon Kim, John Ralph, Daniel R. Noguera, Brian Fox, Craig Bingman
  • Patent number: 10144938
    Abstract: A method of processing a solution comprising aromatic compounds. The method includes culturing a first microorganism in the solution for a time sufficient to reduce an amount of an aromatic compound and thereby generate a processed solution. The culturing may remove an aromatic compound deleterious to growth of a second microorganism without substantially reducing fermentable sugars, thereby permitting enhanced growth of the second microorganism in the processed solution. The culturing may additionally or alternatively convert an aromatic compound into a commodity chemical. The methods of the present invention are advantageous for processing lignocellulosic biomass for upgrading to biofuel or for generating commodity chemicals therefrom.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: December 4, 2018
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Daniel R. Noguera, Timothy J. Donohue, Julian Z. Oshlag, Weiping Zhang, Samantha L. Austin
  • Publication number: 20160312257
    Abstract: A method of processing a solution comprising aromatic compounds. The method includes culturing a first microorganism in the solution for a time sufficient to reduce an amount of an aromatic compound and thereby generate a processed solution. The culturing may remove an aromatic compound deleterious to growth of a second microorganism without substantially reducing fermentable sugars, thereby permitting enhanced growth of the second microorganism in the processed solution. The culturing may additionally or alternatively convert an aromatic compound into a commodity chemical. The methods of the present invention are advantageous for processing lignocellulosic biomass for upgrading to biofuel or for generating commodity chemicals therefrom.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Daniel R. Noguera, Timothy J. Donohue, Julian Z. Oshlag, Weiping Zhang, Samantha L. Austin
  • Publication number: 20110171496
    Abstract: Devices and methods for generating electricity utilizing a light-powered microbial fuel cell that includes a light-admitting reaction chamber containing a biological catalyst, such as a photosynthetic bacteria, in a growth medium, an anode and cathode disposed upon or within the reaction chamber, and a conductive material in electrical communication between the anode and cathode. The anode includes an oxidation catalyst, while the cathode includes a reduction catalyst that is accessible to oxygen gas. Preferably, the devices and methods utilize a single light-admitting chamber within which both cathodic and anodic reactions take place.
    Type: Application
    Filed: October 1, 2008
    Publication date: July 14, 2011
    Inventors: Daniel R. Noguera, Timothy J. Donohue, Marc A. Anderson, Katherine D. McMahon, Isabel Tejedor, Rodolfo E. Perez, Yun Kyung Cho
  • Publication number: 20080213632
    Abstract: Devices and methods for generating electricity utilizing a light-powered microbial fuel cell that includes a light-admitting reaction chamber containing a biological catalyst, such as a photosynthetic bacteria, in a growth medium, an anode and cathode disposed upon or within the reaction chamber, and a conductive material in electrical communication between the anode and cathode. The anode includes an oxidation catalyst, while the cathode includes a reduction catalyst that is accessible to oxygen gas. Preferably, the devices and methods utilize a single light-admitting chamber within which both cathodic and anodic reactions take place.
    Type: Application
    Filed: February 11, 2008
    Publication date: September 4, 2008
    Inventors: Daniel R. Noguera, Timothy J. Donohue, Marc A. Anderson, Katherine D. McMahon, Isabel Tejedor, Yun Kyung Cho, Rodolfo E. Perez