Patents by Inventor Daniel Rosenberg

Daniel Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747942
    Abstract: Facilitating dynamic adjustment of a click/unclick threshold corresponding to a force-based tactile sensor is presented herein. A system can comprise a tactile sensor comprising force-based sensor(s); and a motion detection component that can determine a rate of change of a movement that has been detected via a group of sensors comprising the force-based sensor(s), and based on the rate of change of the movement, modify a defined sensitivity of the force-based sensor(s) with respect to detection of a click and/or unclick event corresponding to the tactile sensor. Further, the motion detection component can decrease the defined sensitivity with respect to detection of the click and/or unclick event in response to the rate of change being determined to satisfy a defined condition representing an increase in the speed at which the stylus or the finger has moved across the tactile sensor.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 5, 2023
    Assignee: SENSEL, INC.
    Inventors: Tomer Moscovich, Ilya Daniel Rosenberg
  • Publication number: 20230266829
    Abstract: One variation for a seamless touch sensor includes: a substrate, a baseplate, a haptic actuator, a cover layer, and a controller. The substrate includes: a top layer including a set of drive and sense electrode pairs; and a bottom layer including an array of force sensors. The baseplate: is arranged below the substrate; and including an array of spring elements coupling the baseplate to the substrate. The haptic actuator is arranged below the substrate and includes: a multi-layer inductor; and a first magnetic element facing the multi-layer inductor. The cover layer is arranged over the substrate to define a continuous surface defining an active region and a inactive touch region. The controller is configured to drive an oscillating voltage across the multi-layer inductor to: induce alternating magnetic coupling between the multi-layer inductor and the magnetic element; and oscillate the active touch region of the cover layer relative to the magnetic element.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Ninad Sathe, Ilya Daniel Rosenberg, Jacob Terracina
  • Publication number: 20230260314
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Application
    Filed: December 7, 2022
    Publication date: August 17, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230251740
    Abstract: One variation of a system includes: a frame; a sensor module; and a controller. The frame includes: a base structure that locates a display defining a front face of a device; and a lateral frame structure extending along and adjacent an edge of the display and supported on a side of the base structure. The base structure and the lateral frame structure cooperate to define a channel arranged behind the display and extending longitudinally between the lateral frame structure and the side of the base structure. The sensor module is arranged in the channel and includes: a substrate; and a linear array of sensors arranged on the substrate and outputting sense signals representing local deflections of the lateral frame structure. The controller detects locations and force magnitudes of side inputs on the device, proximal the edge of the display, based on sense signals output by the linear array of sensors.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, James Junus, Darren Lochun, Tomer Moscovich, Shuangming Li, Alexander Grau
  • Publication number: 20230229242
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Application
    Filed: October 5, 2021
    Publication date: July 20, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230229258
    Abstract: One variation of a system for detecting inputs at a computing device includes: a substrate including a top layer, a bottom layer defining an array of support locations, and electrode pairs proximal the support locations; a touch sensor surface arranged over the top layer of the substrate; a set of spacers, each arranged over an electrode pair at a support location on the bottom layer of the substrate and including a force-sensitive material exhibiting variations in local bulk resistance responsive to variations in applied force; an array of spring elements coupled to the set of spacers, configured to support the substrate on a chassis, and configured to yield to displacement of the substrate downward toward the chassis responsive to forces applied to the touch sensor surface; and a controller configured to interpret forces of inputs on the touch sensor surface based on resistance values of the electrode pairs.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 20, 2023
    Inventors: Ilya Daniel Rosenberg, Ninad Sathe, Eric Rosales
  • Patent number: 11703950
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: July 18, 2023
    Assignee: Sensel, Inc.
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Publication number: 20230221816
    Abstract: One variation of a method for detecting and characterizing force inputs on a surface includes: during a resistance scan cycle of a sampling period, driving a shield electrode arranged over a resistive touch sensor to a reference potential and reading resistance values across sense electrode and drive electrode pairs in the resistive touch sensor; during a processing cycle of the sampling period, transforming the resistance values into a position and a magnitude of a force applied to a tactile surface over the shield electrode, releasing the shield electrode from the reference potential, reading a capacitance value of the shield electrode, and detecting proximity of an object to the tactile surface based on the capacitance value; and generating a touch image representing the position and the magnitude of the force on the tactile surface based on the proximity of the object to the tactile surface.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Charles Watson
  • Publication number: 20230214055
    Abstract: One variation of a method for detecting an input at a touch sensor—including a force-sensitive layer exhibiting variations in local resistance responsive to local variations in applied force on a touch sensor surface and a set of drive and sense electrodes—includes: driving a drive electrode with a drive signal; reading a sense signal from a sense electrode; detecting a alternating-current component and a direct-current component of the sense signal; in response to a magnitude of the direct-current component of the sense signal falling below a threshold magnitude, detecting an input on the touch sensor surface during the scan cycle based on the alternating-current component of the sense signal; and, in response to the magnitude of the direct-current component of the sense signal exceeding the threshold magnitude, detecting the input on the touch sensor surface during the scan cycle based on the direct-current component of the sense signal.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Vijay Rajanna, Tomer Moscovich
  • Patent number: 11693520
    Abstract: A method for calibrating a touch sensor includes: at a calibration system during a calibration routine, applying a probe, at a target selection force, to a sequence of locations on a touch sensor surface of a touch sensor; at the touch sensor, capturing a sequence of touch images representing magnitudes of forces detected on the touch sensor surface during the calibration routine; fusing the sequence of touch images into a response map representing magnitudes of forces detected on the touch sensor surface by the touch sensor responsive to application of the target selection force on the touch sensor surface by the probe during the calibration routine; generating a force compensation map defining threshold forces for detecting selections at the target selection force on the touch sensor surface based on the response map.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: July 4, 2023
    Assignee: Sensel, Inc.
    Inventors: Tomer Daniel Moscovich, Scott Isaacson, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Samuel Palomino
  • Publication number: 20230201803
    Abstract: Catalysts, catalytic materials having catalysts present on supports and catalytic methods are provided. The catalysts, catalytic material and methods are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventors: Fabio R. Zurcher, Daniel Rosenberg, Richard P. James, David Grauer, Wayne P. Schammel, Joel M. Cizeron, Joel Gamoras, Ginger DeMars, Adrienne Tanur
  • Patent number: 11681393
    Abstract: One variation of a system for detecting inputs at a computing device includes: a substrate including top layer and bottom layers, an array of capacitance sensors arranged on the bottom layer, and an array of support locations adjacent the capacitance sensors; a touch sensor surface arranged over the top layer of the substrate; an array of spring elements coupled to the support locations, configured to couple the substrate to a chassis, and configured to yield to displacement of the substrate downward toward the chassis responsive to forces applied to the touch sensor surface; a coupling plate configured to couple to the chassis adjacent the spring elements and effect capacitance values of the capacitance sensors responsive to displacement of the substrate toward the coupling plate; and a controller configured to interpret force magnitudes of inputs on the touch sensor surface based on capacitance values of the capacitance sensors.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: June 20, 2023
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, Ninad Sathe, Eric Rosales
  • Patent number: 11667400
    Abstract: One variation of a tram system includes: a chassis; a latch configured to selectively engage a latch receiver mounted to an aircraft; an alignment feature adjacent the latch and configured to engage an alignment receiver mounted to the aircraft and to communicate acceleration and braking forces from the chassis into the aircraft; an optical sensor facing upwardly from the chassis; a drivetrain configured to accelerate and decelerate the chassis along a runway; and a controller configured to detect an optical fiducial arranged on the aircraft in optical images recorded by the optical sensor adjust a speed of the drivetrain to longitudinally align the alignment feature with the alignment receiver based on positions of the optical fiducial detected in the optical images, trigger the latch to engage the latch receiver once the aircraft has descended onto the chassis, and trigger the drivetrain to actively decelerate the chassis during a landing routine.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: June 6, 2023
    Inventor: Ilya Daniel Rosenberg
  • Publication number: 20230168741
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 1, 2023
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Patent number: 11662854
    Abstract: A method for improving flexibility of a circuit board, e.g., comprising a touch-based sensor, and reducing manufacturing costs by eliminating routing around a border of the touch-based sensor is presented herein. The method comprises forming an array of touch sensors on a first side of the circuit board, in which portions of the circuit board located between three edges of the circuit board and a border of the array of touch sensors exclude traces; and forming first traces between respective second traces in a singular direction on a second side of the circuit board, in which the first traces are electrically coupled, using a first group of vias, to respective rows of the array of touch sensors, and the second traces are electrically coupled, using a second group of vias, to respective columns of the array of touch sensors.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 30, 2023
    Assignee: SENSEL, INC.
    Inventor: Ilya Daniel Rosenberg
  • Patent number: 11656718
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 23, 2023
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11656717
    Abstract: One variation of a system includes: a frame; a sensor module; and a controller. The frame includes: a base structure that locates a display defining a front face of a device; and a lateral frame structure extending along and adjacent an edge of the display and supported on a side of the base structure. The base structure and the lateral frame structure cooperate to define a channel arranged behind the display and extending longitudinally between the lateral frame structure and the side of the base structure. The sensor module is arranged in the channel and includes: a substrate; and a linear array of sensors arranged on the substrate and outputting sense signals representing local deflections of the lateral frame structure. The controller detects locations and force magnitudes of side inputs on the device, proximal the edge of the display, based on sense signals output by the linear array of sensors.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: May 23, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, James Junus, Darren Lochun, Tomer Moscovich, Shuangming Li, Alexander Grau
  • Patent number: 11650687
    Abstract: A tactile touch sensor (TTS) system and method allowing physical augmentation of a high-resolution touch sensor array (TSA) is disclosed. Physical augmentation is accomplished using a TSA physical overlay (TPO) placed on top of the TSA. The TPO is constructed to transmit forces to the underlying TSA. Force transmission is accomplished by either using a flexible overlay or with a rigid mechanical overlay that transmits user forces exerted on the overlay to the underlying TSA. Incorporation of TPO identifiers (TPI) within the TPO permits identification of the TPO by a TPO detector (TPD) allowing operational characteristics of the TSA to be automatically reconfigured to conform to the currently applied TPO structure by a user computing device (UCD). The UCD may be configured to automatically load an appropriate application software driver (ASD) in response to a TPI read by the TPD from the currently applied TPO.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: May 16, 2023
    Assignee: SENSEL, INC.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11635847
    Abstract: One variation of a method for detecting an input at a touch sensor—including a force-sensitive layer exhibiting variations in local resistance responsive to local variations in applied force on a touch sensor surface and a set of drive and sense electrodes—includes: driving a drive electrode with a drive signal; reading a sense signal from a sense electrode; detecting a alternating-current component and a direct-current component of the sense signal; in response to a magnitude of the direct-current component of the sense signal falling below a threshold magnitude, detecting an input on the touch sensor surface during the scan cycle based on the alternating-current component of the sense signal; and, in response to the magnitude of the direct-current component of the sense signal exceeding the threshold magnitude, detecting the input on the touch sensor surface during the scan cycle based on the direct-current component of the sense signal.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: April 25, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Aaron Zarraga, Vijay Rajanna, Tomer Moscovich
  • Patent number: 11635839
    Abstract: One variation of a method for detecting and characterizing force inputs on a surface includes: during a resistance scan cycle of a sampling period, driving a shield electrode arranged over a resistive touch sensor to a reference potential and reading resistance values across sense electrode and drive electrode pairs in the resistive touch sensor; during a processing cycle of the sampling period, transforming the resistance values into a position and a magnitude of a force applied to a tactile surface over the shield electrode, releasing the shield electrode from the reference potential, reading a capacitance value of the shield electrode, and detecting proximity of an object to the tactile surface based on the capacitance value; and generating a touch image representing the position and the magnitude of the force on the tactile surface based on the proximity of the object to the tactile surface.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 25, 2023
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Charles Watson