Patents by Inventor Danop Rajabhandharaks

Danop Rajabhandharaks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230414285
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason XUAN, Thomas C. HASENBERG, Jian James ZHANG, Steven Yihlih PENG, Danop RAJABHANDHARAKS
  • Patent number: 11786306
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20220370130
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Jian James ZHANG, Rongwei Jason XUAN, Danop RAJABHANDHARAKS
  • Patent number: 11439465
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 13, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jian James Zhang, Rongwei Jason Xuan, Danop Rajabhandharaks
  • Publication number: 20220079674
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason XUAN, Thomas C. HASENBERG, Jian James ZHANG, Steven Yihlih PENG, Danop RAJABHANDHARAKS
  • Patent number: 11213352
    Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 4, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20200000522
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason XUAN, Thomas C. HASENBERG, Jian James ZHANG, Steven Yihlih PENG, Danop RAJABHANDHARAKS
  • Patent number: 10441359
    Abstract: A surgical laser system includes a laser generator, a laser probe, a stone analyzer, and a controller. The laser generator is configured to generate laser energy based on laser energy settings. The laser probe is configured to discharge the laser energy. The stone analyzer has an output relating to a characteristic of a targeted stone. The controller comprises at least one processor configured to determine the laser energy settings based on the output.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20190159839
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Jian James Zhang, Rongwei Jason XUAN, Danop RAJABHANDHARAKS
  • Publication number: 20180303549
    Abstract: A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train. In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Patent number: 10039604
    Abstract: A system may include a stone analyzer, a controller, a laser generator, and a beam combiner. The stone analyzer may be configured to generate an output relating to a natural or resonance frequency of a kidney or bladder stone. The controller may be configured to determine the natural or resonance frequency of the stone based on the output from the stone analyzer, and match a resultant pulse repetition rate with the natural or resonance frequency. The laser generator may be configured to generate at least two laser pulse trains, with each laser pulse train including laser pulses at a pulse repetition rate. The beam combiner may be configured to combine the at least two laser pulse trains into a combined laser pulse train including laser pulses at the resultant pulse repetition rate.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 7, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20170325890
    Abstract: A system may include a stone analyzer, a controller, a laser generator, and a beam combiner. The stone analyzer may be configured to generate an output relating to a natural or resonance frequency of a kidney or bladder stone. The controller may be configured to determine the natural or resonance frequency of the stone based on the output from the stone analyzer, and match a resultant pulse repetition rate with the natural or resonance frequency. The laser generator may be configured to generate at least two laser pulse trains, with each laser pulse train including laser pulses at a pulse repetition rate. The beam combiner may be configured to combine the at least two laser pulse trains into a combined laser pulse train including laser pulses at the resultant pulse repetition rate.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Inventors: Wen-Jui Ray CHIA, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Patent number: 9757199
    Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 12, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks
  • Publication number: 20160081749
    Abstract: A laser fiber for use in performing a medical laser treatment includes an optical fiber and a fiber tip. The optical fiber includes a terminating end surface at a distal end. The fiber tip is positioned at the distal end of the optical fiber and includes a transmissive portion and a spacer portion. Laser energy discharged from the terminating end surface of the optical fiber is transmitted through the transmissive portion. The spacer portion defines a distal terminating end of the fiber tip that is spaced a predetermined distance from the terminating end surface of the optical fiber. The predetermined distance is set for shock wave generation for calculus destruction at the distal terminating end of the fiber tip.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 24, 2016
    Inventors: Jian James Zhang, Rongwei Jason Xuan, Danop Rajabhandharaks
  • Publication number: 20150289937
    Abstract: A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 15, 2015
    Inventors: Wen-Jui Ray Chia, Rongwei Jason Xuan, Thomas C. Hasenberg, Jian James Zhang, Steven Yihlih Peng, Danop Rajabhandharaks