Patents by Inventor David A. BRITZ

David A. BRITZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210262099
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 26, 2021
    Inventors: David BRITZ, Pravin K. NARWANKAR, David THOMPSON, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20210254223
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 19, 2021
    Inventors: David BRITZ, Pravin K. NARWANKAR, David THOMPSON, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20210254222
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof and can have a thickness from 1 nm to 3,000 nm.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 19, 2021
    Inventors: David BRITZ, Pravin K. NARWANKAR, David THOMPSON, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20210156789
    Abstract: A method for detecting corrosion on a conductive object includes submerging a surface of the conductive object at least partially in an aqueous solution, flowing current through the surface of the conductive object by forming a voltage differential across the surface, varying the voltage differential across the surface while monitoring the current through the surface of the conductive object, determining a total charge corresponding to a corrosion level of the surface of the conductive object based on current versus voltage levels. The corrosion level may further be utilized in selecting a cleaning process to remediate the corrosion of the surface based on the corrosion level and in applying a protective corrosion barrier to on at least part of the surface after the cleaning process.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Inventors: Gang Grant PENG, Robert Douglas MIKKOLA, David BRITZ, Lance SCUDDER, David W. GROECHEL
  • Patent number: 11015252
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof, and is from 1 nm to 3 microns in thickness.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 25, 2021
    Inventors: David Britz, Pravin K. Narwankar, David Thompson, Yuriy Melnik, Sukti Chatterjee
  • Publication number: 20200392626
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method for producing a protective coating on an aerospace component includes depositing a metal oxide template layer on the aerospace component containing nickel and aluminum (e.g., nickel-aluminum superalloy) and heating the aerospace component containing the metal oxide template layer during a thermal process and/or an oxidation process. The thermal process and/or oxidation process includes diffusing aluminum contained within the aerospace component towards a surface of the aerospace component containing the metal oxide template layer, oxidizing the diffused aluminum to produce an aluminum oxide layer disposed between the aerospace component and the metal oxide template layer, and removing at least a portion of the metal oxide template layer while leaving the aluminum oxide layer.
    Type: Application
    Filed: September 4, 2019
    Publication date: December 17, 2020
    Inventors: Sukti CHATTERJEE, Kenichi OHNO, Lance A. SCUDDER, Yuriy MELNIK, David A. BRITZ, Pravin K. NARWANKAR, Thomas KNISLEY, Mark SALY, Jeffrey ANTHIS
  • Publication number: 20200361124
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. The protective coating can be anti-coking coatings to reduce or suppress coke formation when the aerospace component is heated in the presence of a fuel. In one or more embodiments, a method for depositing the protective coating on an aerospace component includes exposing the aerospace component to a cleaning process to produce a cleaned surface on the aerospace component and sequentially exposing the aerospace component to a precursor and a reactant to form a protective coating on the cleaned surface of the aerospace component by an atomic layer deposition (ALD) process. The aerospace component can be one or more of a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, or any combination thereof.
    Type: Application
    Filed: August 16, 2019
    Publication date: November 19, 2020
    Inventor: David A. BRITZ
  • Publication number: 20200340107
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes depositing one or more layers on a surface of the aerospace component using an atomic layer deposition or chemical vapor deposition process, and performing a partial oxidation and annealing process to convert the one or more layers to a coalesced layer having a preferred phase crystalline assembly. During oxidation cycles, an aluminum depleted region is formed at the surface of the aerospace component, and an aluminum oxide region is formed between the aluminum depleted region and the coalesced layer. The coalesced layer forms a protective coating, which decreases the rate of aluminum depletion from the aerospace component and the rate of new aluminum oxide scale formation.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 29, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sukti CHATTERJEE, Lance A. SCUDDER, Yuriy MELNIK, David A. BRITZ, Thomas KNISLEY, Kenichi OHNO, Pravin K. NARWANKAR
  • Publication number: 20190330746
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof, and is from 1 nm to 3 microns in thickness.
    Type: Application
    Filed: February 22, 2019
    Publication date: October 31, 2019
    Inventors: David BRITZ, Pravin K. NARWANKAR, David THOMPSON, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20190189399
    Abstract: Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: SATORU KOBAYASHI, LANCE SCUDDER, DAVID BRITZ, SOONAM PARK, DMITRY LUBOMIRSKY, HIDEO SUGAI
  • Patent number: 9338788
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: May 10, 2016
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert Raymond Miller, II
  • Publication number: 20150351112
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: David Britz, Robert Raymond Miller, II
  • Patent number: 9106344
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: August 11, 2015
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert Raymond Miller, II
  • Patent number: 8742648
    Abstract: An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 3, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: David Britz
  • Publication number: 20130336648
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: DAVID BRITZ, Robert Raymond Miller, II
  • Patent number: 8515294
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 20, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Publication number: 20130134718
    Abstract: An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventor: DAVID BRITZ
  • Patent number: 8417121
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a liquid lens are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where a liquid lens is deployed with each of the one or more detectors. The method determines, for each of the detected signals, if the detected signal is out of focus, and applies a corrective voltage to each liquid lens that corresponds to a detected terahertz signal that is out of focus, wherein the corrective voltage adjusts a focus of the detected signal. The method measures a signal-to-noise ratio of the detected signals, and establishing a terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 9, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Patent number: 8369584
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 5, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Publication number: 20120294494
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller