Patents by Inventor David A. Dinsmoor

David A. Dinsmoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131345
    Abstract: A system is provided for identifying and reducing noise in a therapeutic procedure. For example, the system may be configured to measure one or more signals with cardiac activity. The system may be configured to then identify one or more sources of noise that are distorting the one or more signals with cardiac activity and may reduce the one or more sources of noise from the one or more signals with cardiac activity. Subsequently, the system may be configured to determine one or more aggregate cardiac-derived metrics and/or save processed cardiac data based on the one or more signals with cardiac activity with the one or more sources of noise reduced. Additionally, the system may be configured to determine one or more parameters for applying an electrical signal to an anatomical element of a patient based on the one or more aggregate cardiac-derived metrics and/or saved processed cardiac data.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 25, 2024
    Inventors: Malgorzata Maria Straka, Annemarie K. Brinda, Juan G. Hincapie, Leonid M. Litvak, Jerel Keith Mueller, Joshua James Nedrud, Andrew Jay Cleland, Aleksandra Pavlovna Kharam, David A. Dinsmoor
  • Publication number: 20240123235
    Abstract: A system may be configured to sense local field potentials (LFPs) from electrodes placed in epidural space near the spine of a patient. The system may be configured to analyze the sensed LFPs and determine a change in a state of the patient, such as a physiological state of the patient. The system may use such analysis to update and/or suggest parameters for delivery of electrical stimulation therapy. The system may further be configured to analyze LFPs in a frequency domain by applying a wavelet transform or other transform to sensed LFPs.
    Type: Application
    Filed: February 10, 2022
    Publication date: April 18, 2024
    Inventors: David A. Dinsmoor, Leonid M. Litvak, Juan G. Hincapie
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20240108878
    Abstract: Example techniques, devices, and systems are described herein. An example device includes stimulation generation circuitry, sensing circuitry, and processing circuitry. The processing circuitry is configured to control the stimulation generation circuitry to generate a first stimulation signal having a first stimulation recharge parameter for delivery to target anatomy and receive from the sensing circuitry a sensed evoked response signal. The processing circuitry is configured to analyze the sensed evoked response signal for one or more artifacts and adjust, based on the one or more artifacts, the first stimulation recharge parameter to determine a second stimulation recharge parameter. The processing circuitry is also configured to control the stimulation generation circuitry to generate a second stimulation signal having the second stimulation recharge parameter for delivery to the target anatomy.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 4, 2024
    Inventors: Kristin N. Hageman, Aleksandra P. Kharam, David A. Dinsmoor, Shawn C. Kelley
  • Patent number: 11944819
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes a stimulation generator configured to deliver a stimulation pulse to a patient, sensing circuitry configured to sense an evoked compound action potential (ECAP) signal evoked from the stimulation pulse, and processing circuitry. The processing circuitry may be configured to determine a maximum value of a derivative of the ECAP signal, determine a minimum value of the derivative of the ECAP signal, determine, based on the maximum value of the derivative and the minimum value of the derivative, a characteristic value of the ECAP signal, and determine, based on the characteristic value of the ECAP signal, at least one parameter value at least partially defining electrical stimulation therapy to be delivered to the patient.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: April 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Corey, Kristin N. Hageman, David A. Dinsmoor, Hank Bink, Christopher L. Pulliam, Thomas Adamski
  • Publication number: 20240091539
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on sensed ECAP signals. For example, processing circuitry is configured to control delivery of a first train of electrical stimulation pulses at a first frequency to a first target tissue and control delivery of a second train of electrical stimulation pulses at a second frequency to a second target tissue different from the first target tissue. The processing circuitry can also receive an ECAP signal elicited by a pulse of the second train of electrical stimulation pulses, adjust, based on the ECAP signal, a first value of a parameter that at least partially defines the first tram of electrical stimulation pulses to a second value, and, responsive to adjusting the first value of the parameter to the second value, control delivery of subsequent pulses of the first tram of electrical stimulation pulses according to the second value of the parameter.
    Type: Application
    Filed: January 13, 2022
    Publication date: March 21, 2024
    Inventors: David A. Dinsmoor, Ricardo Vallejo, Kristin N. Hageman, Hank Bink, Abigail Lauren Skerker
  • Patent number: 11931582
    Abstract: Evoked compound action potentials (ECAPs) may be used to determine therapy. For example, a medical device includes stimulation generation circuitry and processing circuitry. The processing circuitry is configured to determine if a characteristic of a first ECAP is greater than a threshold ECAP characteristic value. Based on the characteristic of the first ECAP being greater than the threshold ECAP characteristic value, the processing circuitry is configured to decrease a parameter of a first set of pulses delivered by the stimulation generation circuitry after the first ECAP. Additionally, the processing circuitry is configured to determine if a characteristic of a second ECAP is less than the threshold ECAP characteristic value and based on the characteristic of the second ECAP being less than the threshold ECAP characteristic value, increase a parameter of a second set of pulses delivered by the stimulation generation circuitry after the second ECAP.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: March 19, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Patent number: 11925801
    Abstract: A system including a stimulation generator configured to delivery external stimulation to control or alleviate urinary or fecal incontinence. The system may also include sense electrodes configured to sense the presence of wetness. The system may provide closed loop therapy based on the presence of wetness.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: March 12, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xuan K Wei, Eric H. Bonde, John R. LaLonde, David A. Dinsmoor
  • Publication number: 20240075286
    Abstract: An example medical device includes processing circuitry configured to determine an electrode impedance value for each of one or more electrodes of a lead coupled to the medical device, identify one or more of the electrodes having electrode impedance values that are greater than electrode impedance values of other electrodes of the lead, from the identified one or more electrodes, determine a recommendation of electrodes to use for sensing a signal, and output information indicative of the recommendation.
    Type: Application
    Filed: February 18, 2022
    Publication date: March 7, 2024
    Inventors: David A. Dinsmoor, Juan G. Hincapie
  • Publication number: 20240066304
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on a posture state of a patient are described. For example, processing circuitry is configured to receive an input from a user adjusting an informed stimulation parameter that at least partially defines a plurality of informed pulses, determine a ratio of a first value of an informed stimulation parameter to a first value of a control stimulation parameter that at least partially defines a plurality of control pulses, change, according to the input, the first value of the informed stimulation parameter to a second value of the informed stimulation parameter, and change, based on the input and the ratio, the first value of the control stimulation parameter to a second value of the control stimulation parameter. The processing circuitry' can then control delivery of the adjusted control pulses and informed pulses.
    Type: Application
    Filed: January 4, 2022
    Publication date: February 29, 2024
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank T. Bink, Christopher L. Pulliam
  • Publication number: 20240050753
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 15, 2024
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank T. Bink, Kristin N. Hageman
  • Patent number: 11896828
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to determine an implant location for a lead. An example method includes receiving first information representative of a first evoked compound action potential (ECAP) signal sensed in response to a first control stimulus delivered to a first location adjacent to a spinal cord of a patient. The method also includes receiving, second information representative of a second ECAP signal in response to a second control stimulus delivered to a second location adjacent to the spinal cord of the patient. Additionally, the method includes outputting a first indication of the first information representative of the first ECAP signal and a second indication of the second information representative of the second ECAP signal.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Andrew L Schmeling
  • Publication number: 20240042210
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to monitor lead position and/or detect lead migration. An example system includes sensing circuitry configured to sense an ECAP signal, and processing circuitry. The processing circuitry controls the sensing circuitry to detect, after delivery of an electrical stimulation pulse, a current ECAP signal, and determines one or more characteristics of the current ECAP signal. The processing circuitry also compares the one or more characteristics of the current ECAP signal to corresponding one or more characteristics of a baseline ECAP signal, and determines, based on the comparison, a migration state of the electrodes delivering the electrical stimulation pulse. Additionally, the processing circuitry outputs, based on the migration state, an alert indicative of migration of the electrodes.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Inventors: Jiashu Li, David A. Dinsmoor, Duane L. Bourget, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Publication number: 20240033519
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 1, 2024
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank T. Bink, Kristin N. Hageman
  • Publication number: 20240009463
    Abstract: Examples for controlling electrical stimulation therapy are described. One example includes delivering a pulse train at a frequency to a patient, the pulse train comprising a plurality of first pulses at least partially interleaved with a plurality of second pulses, wherein the plurality of first pulses are configured to facilitate sensing elicited electrical signals, each pulse of the plurality of first pulses having an active first phase and active second phase. Each pulse of the plurality of second pulses may include an active first phase and a passive second phase. Additionally, or alternatively, the plurality of second pulses may alternate between a cathodic active first phase and an anodic active first phase according to a ratio. At least one pulse of the plurality' of second pulses may have an interphase interval that is longer than an interphase interval of at least one pulse of the plurality of first pulses.
    Type: Application
    Filed: December 22, 2021
    Publication date: January 11, 2024
    Applicant: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Ricardo Vallejo, Abigail Lauren Skerker, Leonid M. Litvak, Kristin N. Hageman, Hank T. Bink
  • Publication number: 20240001125
    Abstract: Example devices and techniques for improving signal quality of a sensed evoked response signal include processing circuitry communicatively coupled to stimulation generation circuitry and sensing circuitry. The processing circuitry is configured to control the stimulation generation circuitry to generate a stimulation signal and receive from the sensing circuitry the sensed evoked response signal. The processing circuitry is configured to determine that a characteristic value of at least one of the artifact or the sensed evoked response signal meets a threshold and automatically change, based on the determination that the characteristic value of the at least one of an artifact in the sensed evoked response signal or the sensed evoked response signal meets the threshold, at least one sensing parameter.
    Type: Application
    Filed: June 26, 2023
    Publication date: January 4, 2024
    Inventors: Benjamin P. Isaacson, David A. Dinsmoor, Leonid M. Litvak, Kristin N. Hageman, Hank Bink
  • Patent number: 11839755
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Publication number: 20230381521
    Abstract: For example, a system includes stimulation generation circuitry configured to deliver a multiphasic stimulation pulse to the patient and sensing circuitry configured to sense a composite evoked compound action potential (ECAP) signal elicited by the multiphasic stimulation pulse. The system further includes processing circuitry electrically connected to the sensing circuitry and the stimulation generation circuitry, the processing circuitry being configured to control the stimulation generation circuitry to deliver the multiphasic stimulation pulse that comprises a first phase and a second phase and determine, based on the composite ECAP signal, a propagation characteristic for the composite ECAP signal that is elicited by the multiphasic stimulation pulse.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: David A. Dinsmoor, Aleksandra P. Kharam, Leonid M. Litvak
  • Publication number: 20230364425
    Abstract: Processing circuitry of a system configured to determine a patient state based on sensed signals including posture and activity information and control delivery of electrical stimulation therapy to the patient via electrodes implanted proximal to target tissue of the patient. The sensed signals also include impedance measurement, and other bioelectrical signals, where sensing is interleaved with the electrical stimulation therapy. Responsive to determining the patient state, select an action, wherein the selected action comprises one or more of: store collected information, upload the collected information to an external computing device, and output an electronic signal comprising an alert.
    Type: Application
    Filed: April 21, 2023
    Publication date: November 16, 2023
    Inventors: Hank T. Bink, Erik J. Peterson, Jiashu Li, Vinod Sharma, Juan G. Hincapie, Eric J. Panken, Leonid M. Litvak, David A. Dinsmoor, Todd D. Zenisek, Andrew L. Schmeling, Andrew J. Cleland