Patents by Inventor David A. Dinsmoor

David A. Dinsmoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11491326
    Abstract: A lead body is operable to be implanted proximate a target nerve tissue of a patient. A sensing electrode is configured to sense biopotentials over a first partial circumference of the lead body. A stimulation electrode is configured to deliver stimulation energy over a second partial circumference of the lead body. A signal generator is electrically coupled to the stimulation electrode and a sensing circuit is coupled to the sensing electrode. A processor is operable to apply a stimulation signal to the stimulation electrode via the signal generator and, via the sensing circuit, sense an evoked response to the stimulation signal that propagates along a neural pathway.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Jiashu Li, Andrew L. Schmeling
  • Patent number: 11484715
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Patent number: 11439825
    Abstract: Systems, devices, and techniques are described for determining a posture state of a patient based on detected evoked compound action potentials (ECAPs). In one example, a medical device includes stimulation circuitry configured to deliver electrical stimulation and sensing circuitry configured to sense a plurality of evoked compound action potential (ECAP) signals. The medical device also includes processing circuitry configured to control the stimulation circuitry to deliver a plurality of electrical stimulation pulses having different amplitude values, control the sensing circuitry to detect, after delivery of each electrical stimulation pulse of the plurality of electrical stimulation pulses, a respective ECAP signal of the plurality of ECAP signals, and determine, based on the plurality of ECAP signals, a posture state of the patient.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Kristin N. Hageman, Hank Bink, Jiashu Li
  • Publication number: 20220218996
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation are described. For example, processing circuitry is configured to receive, via a sensing electrode located at a target region of a patient, a plurality of evoked compound action potential (ECAP) signals elicited from respective electrical stimuli delivered to the patient; determine, based on the plurality of ECAP signals, an aggressor category for at least some ECAP signals of the plurality of ECAP signals, the aggressor category determined from a plurality of aggressor categories; determine, based on the aggressor category, a set of control policy parameters that at least partially define closed-loop control of stimulation therapy; and controlling delivery of the stimulation therapy according to at least the set of control policy parameters and one or more subsequent ECAP signals.
    Type: Application
    Filed: December 1, 2021
    Publication date: July 14, 2022
    Inventors: David A. Dinsmoor, Kristin N. Hageman
  • Publication number: 20220176128
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 9, 2022
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Publication number: 20220134108
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to determine an implant location for a lead. An example method includes receiving first information representative of a first evoked compound action potential (ECAP) signal sensed in response to a first control stimulus delivered to a first location adjacent to a spinal cord of a patient. The method also includes receiving, second information representative of a second ECAP signal in response to a second control stimulus delivered to a second location adjacent to the spinal cord of the patient. Additionally, the method includes outputting a first indication of the first information representative of the first ECAP signal and a second indication of the second information representative of the second ECAP signal.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: David A. Dinsmoor, Andrew L. Schmeling
  • Publication number: 20220111210
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20220080205
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20220062639
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes processing circuitry configured to receive ECAP information representative of an ECAP signal sensed by sensing circuitry, and determine, based on the ECAP information, that the ECAP signal includes at least one of an N2 peak, P3 peak, or N3 peak. The processing circuitry may then control delivery of electrical stimulation based on at least one of the N2 peak, P3 peak, or N3 peak.
    Type: Application
    Filed: August 23, 2021
    Publication date: March 3, 2022
    Inventors: David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20220062638
    Abstract: Systems, devices, methods, and techniques are described for phase misalignment correction for evoked compound action potential (ECAP) measurement from alternating polarity stimulation. An example system includes processing circuitry that receives a first ECAP signal elicited by a first polarity configuration of stimulus electrodes and receives a second ECAP signal elicited by a second polarity configuration of the stimulus electrodes opposite the first polarity configuration. The processing circuitry also generates an adjusted second ECAP signal by temporally aligning at least a portion of the second ECAP signal to at least a portion of the first ECAP signal, and generates a composite ECAP signal based on the first ECAP signal and the adjusted second ECAP signal. Additionally, the processing circuitry outputs the composite ECAP signal.
    Type: Application
    Filed: August 23, 2021
    Publication date: March 3, 2022
    Inventors: David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20220040485
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to monitor lead position and/or detect lead migration. An example system includes sensing circuitry configured to sense an ECAP signal, and processing circuitry. The processing circuitry controls the sensing circuitry to detect, after delivery of an electrical stimulation pulse, a current ECAP signal, and determines one or more characteristics of the current ECAP signal. The processing circuitry also compares the one or more characteristics of the current ECAP signal to corresponding one or more characteristics of a baseline ECAP signal, and determines, based on the comparison, a migration state of the electrodes delivering the electrical stimulation pulse. Additionally, the processing circuitry outputs, based on the migration state, an alert indicative of migration of the electrodes.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Inventors: Jiashu Li, David A. Dinsmoor, Duane L. Bourget, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Patent number: 11224748
    Abstract: A method of programming an implantable medical device (IMD) configured to provide electrical stimulation via a plurality of stimulation vectors during delivery of the electrical stimulation of a plurality of pulse widths to a neural target. The method may comprise comparing strength-duration curve data for the plurality of stimulation vectors to one another, the strength-duration curve data representing, for respective pulse widths and stimulation vectors, a corresponding stimulation strength that evokes a physiological response associated with the neural target. The method may comprise selecting at least one stimulation vector of the plurality of stimulation vectors based on the comparison of the strength-duration curve data for the plurality of stimulation vectors. The method may comprise programming, in response to the selection, the IMD to deliver the electrical stimulation to the neural target via the selected at least one stimulation vector.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: January 18, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: David A. Dinsmoor, Xin Su
  • Publication number: 20220008730
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Publication number: 20220008731
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of tune and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink
  • Publication number: 20220008726
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes a stimulation generator configured to deliver a stimulation pulse to a patient, sensing circuitry configured to sense an evoked compound action potential (ECAP) signal evoked from the stimulation pulse, and processing circuitry. The processing circuitry may be configured to determine a maximum value of a derivative of the ECAP signal, determine a minimum value of the derivative of the ECAP signal, determine, based on the maximum value of the derivative and the minimum value of the derivative, a characteristic value of the ECAP signal, and determine, based on the characteristic value of the ECAP signal, at least one parameter value at least partially defining electrical stimulation therapy to be delivered to the patient.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Inventors: Robert A. Corey, Kristin N. Hageman, David A. Dinsmoor, Hank Bink, Christopher L. Pulliam, Thomas Adamski
  • Publication number: 20220001176
    Abstract: Example systems for positioning an implantable electrode may include a stimulation circuitry, a sensing circuitry, and processing circuitry. The stimulation circuitry may generate electrical stimulation deliverable to a patient. The sensing circuitry may sense electromyographic (EMG) responses. The processing circuitry may control the stimulation circuitry to deliver the electrical stimulation at a plurality of different stimulation metric levels at each of a plurality of different positions. The processing circuitry may sense, via the sensing circuitry, electromyographic (EMG) responses to the electrical stimulation. The processing circuitry may score one or more of the different positions for chronic implantation of at least one implantable electrode. The scoring may be based on a stimulation metric level greater than a predetermined metric threshold sufficient to evoke at least some of the sensed EMG responses, and a level of the at least some of the sensed EMG responses.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Inventors: Xin Su, David A. Dinsmoor, Jason E. Agran
  • Patent number: 11202912
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 21, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210370072
    Abstract: A medical device system includes an IMD configured to deliver a plurality of stimulation vectors and processing circuitry. The processing circuitry is configured to determine strength-duration curve data for the plurality of stimulation vectors, the strength-duration curve data representing, for respective pulse widths and stimulation vectors, a corresponding strength of electrical stimulation that evokes a physiological response, compare respective slopes of the strength-duration curve data for the plurality of stimulation vectors to one another, select at least one stimulation vector of the plurality of stimulation vectors based on the comparison of the respective slopes of the strength-duration curve data for the plurality of stimulation vectors, and cause the IMD to deliver the electrical stimulation to a neural target via the selected at least one stimulation vector.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: David A. Dinsmoor, Xin Su
  • Publication number: 20210361942
    Abstract: In some examples, a method including determining a chronaxie of evoked threshold motor responses from electrical stimulation delivered to a sacral nerve of a patient; and delivering, based on the determined chronaxie, electrical stimulation therapy, configured to treat a patient condition, to the sacral nerve having a pulse width at or near the identified chronaxie, wherein the delivered electrical stimulation is configured to inhibit contraction of at least one a bladder or bowel of the patient.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Xin Su, David A. Dinsmoor
  • Patent number: 11179567
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 23, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman