Patents by Inventor David Arnold Haake

David Arnold Haake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240026469
    Abstract: A method of identifying a target microbe in a specimen and including the steps of a) obtaining a specimen, b) lysing the specimen to release a plurality of rRNA molecules from one or more first target microbes in the specimen, c) contacting the specimen with a plurality of first oligonucleotide probe sets configured to selectively bind to rRNA molecules released from the target microbe thereby forming a plurality of first hybridized complexes, each first hybridized complex including one first capture probe and one first detector probe and one of the plurality of rRNA molecules, and d) analyzing the first hybridized complexes to identify a first target microbe in the specimen.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 25, 2024
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti
  • Publication number: 20240002955
    Abstract: A method of determining a bacterial density in a specimen may include the steps of: (a) conducting an RNA assay on the specimen to determine a microbial rRNA concentration, wherein the microbial rRNA concentration is defined as the number of rRNA molecules per volume of the specimen; and (b) converting the rRNA concentration to a bacterial density value.
    Type: Application
    Filed: September 15, 2023
    Publication date: January 4, 2024
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti, Victoria Scott
  • Publication number: 20230398507
    Abstract: There is described a system for growing a microorganism in liquid culture, the system comprising: a driving apparatus configured to house and oscillate a microfluidic cartridge; and a microfluidic cartridge comprising at least one incubation chamber, such that when the system is in use, the incubation chamber may be oscillated back and forth along an oscillation path using a preferred oscillation protocol. There is also described a method of growing a microorganism in liquid culture, the method comprising disposing a microorganism and suitable growth medium into an incubation chamber; and mixing the microorganism and growth medium by oscillating the incubation chamber back and forth along an oscillation path using a preferred oscillation protocol. There is also described a microfluidic cartridge that may be used to grow microorganisms using the system and methods described above.
    Type: Application
    Filed: August 15, 2023
    Publication date: December 14, 2023
    Inventors: Alexandra Perebikovsky, Bernard Churchill, Scott Churchman, David Arnold Haake, Colin Wynn Halford, Yujia Liu, Marc Madou, Gabriel Monti
  • Publication number: 20230374563
    Abstract: A method for determining the susceptibility of bacteria in a clinical sample comprising urine or an inoculant derived therefrom to an antibiotic agent may include the steps of a) inoculating a test portion of the clinical sample in a medium containing a predetermined concentration of the antibiotic agent; b) inoculating a control portion of the clinical sample in a medium that does not contain the antibiotic agent; c) incubating the test portion for an incubation period; d) incubating the control portion for the incubation period; e) determining a quantity of RNA in the test portion and a quantity of RNA in the control portion at the conclusion of the incubation period that is less than 480 minutes after the completion of step a); and f) determining a susceptibility of the bacteria to the antibiotic agent by comparing the quantity of RNA in the test portion to the quantity of the RNA in the control portion.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti, Horacio Kido, Marc Madou, Alexandra Perebikovsky, Yujia Liu, Daniel Gussin
  • Publication number: 20230365960
    Abstract: There is described a method for extracting a target chemical compound from a cellular material in a sample. The method comprising the steps of: subjecting the sample to mechanical lysis to cause disruption of a cellular membrane in the cellular material; contacting the sample with an alkaline material to produce a lysate composition comprising the target chemical compound; and recovering the lysate composition from the sample. There is also described a method for producing a lysate composition comprising RNA from a mammalian bodily fluid sample comprising a cellular material. There is also described a method for extracting a nucleic acid from a cellular material in a bodily fluid or an inoculant derived therefrom.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Gabriel MONTI, Colin Wynn HALFORD, Alexandra PEREBIKOVSKY, Yujia LIU, Horacio KIDO, David Arnold HAAKE, Marc MADOU, Daniel GUSSIN, Bernard CHURCHILL
  • Publication number: 20220170078
    Abstract: A method of identifying a target microbe in a specimen and including the steps of a) obtaining a specimen, b) lysing the specimen to release a plurality of rRNA molecules from one or more first target microbes in the specimen; c) contacting the specimen with a plurality of first oligonucleotide probe sets configured to selectively bind to rRNA molecules released from the target microbe thereby forming a plurality of first hybridized complexes, each first hybridized complex including one first capture probe and one first detector probe and one of the plurality of rRNA molecules, and d) analyzing the first hybridized complexes to identify a first target microbe in the specimen.
    Type: Application
    Filed: May 14, 2019
    Publication date: June 2, 2022
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti
  • Publication number: 20210246489
    Abstract: A method of determining a bacterial density in a specimen may include the steps of: (a) conducting an RNA assay on the specimen to determine a microbial rRNA concentration, wherein the microbial rRNA concentration is defined as the number of rRNA molecules per volume of the specimen; and (b) 1 converting the rRNA concentration to a bacterial density value.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 12, 2021
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti, Victoria Scott
  • Publication number: 20200376452
    Abstract: There is described a system for growing a microorganism in liquid culture, the system comprising: a driving apparatus configured to house and oscillate a microfluidic cartridge; and a microfluidic cartridge comprising at least one incubation chamber, such that when the system is in use, the incubation chamber may be oscillated back and forth along an oscillation path using a preferred oscillation protocol. There is also described a method of growing a microorganism in liquid culture, the method comprising disposing a microorganism and suitable growth medium into an incubation chamber; and mixing the microorganism and growth medium by oscillating the incubation chamber back and forth along an oscillation path using a preferred oscillation protocol. There is also described a microfluidic cartridge that may be used to grow microorganisms using the system and methods described above.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 3, 2020
    Inventors: Alexandra Perebikovsky, Bernard Churchill, Scott Churchman, David Arnold Haake, Colin Wynn Halford, Yujia Liu, Marc Madou, Gabriel Monti
  • Publication number: 20200370036
    Abstract: There is described a method for extracting a target chemical compound from a cellular material in a sample. The method comprising the steps of: subjecting the sample to mechanical lysis to cause disruption of a cellular membrane in the cellular material; contacting the sample with an alkaline material to produce a lysate composition comprising the target chemical compound; and recovering the lysate composition from the sample. There is also described a method for producing a lysate composition comprising RNA from a mammalian bodily fluid sample comprising a cellular material. There is also described a method for extracting a nucleic acid from a cellular material in a bodily fluid or an inoculant derived therefrom.
    Type: Application
    Filed: August 3, 2018
    Publication date: November 26, 2020
    Inventors: Gabriel MONTI, Colin Wynn HALFORD, Alexandra PEREBIKOVSKY, Yujia LIU, Horacio KIDO, David Arnold HAAKE, Marc MADOU, Daniel GUSSIN, Bernard CHURCHILL
  • Publication number: 20200263224
    Abstract: A method for determining the susceptibility of bacteria in a clinical sample comprising urine or an inoculant derived therefrom to an antibiotic agent may include the steps of a) inoculating a test portion of the clinical sample in a medium containing a predetermined concentration of the antibiotic agent; b) inoculating a control portion of the clinical sample in a medium that does not contain the antibiotic agent; c) incubating the test portion for an incubation period; d) incubating the control portion for the incubation period; e) determining a quantity of RNA in the test portion and a quantity of RNA in the control portion at the conclusion of the incubation period that is less than 480 minutes after the completion of step a); and f) determining a susceptibility of the bacteria to the antibiotic agent by comparing the quantity of RNA in the test portion to the quantity of the RNA in the control portion.
    Type: Application
    Filed: August 20, 2018
    Publication date: August 20, 2020
    Inventors: Bernard Churchill, Scott Adam Churchman, David Arnold Haake, Colin Wynn Halford, Roger Knauf, Gabriel Monti, Horacio Kido