Patents by Inventor David Ernest Hartley

David Ernest Hartley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675163
    Abstract: An endoluminal prosthesis system for a branched body lumen comprises a branch vessel prosthesis. The branch vessel prosthesis is deployable within a branch vessel body lumen and comprises a stent having a generally tubular body portion, a flareable proximal end portion, and a coupling portion disposed intermediate the body portion and the flareable portion. The coupling portion is more crush-resistant than the body portion. The flareable proximal end may be disposed within a fenestrated stent graft wit with coupling portion disposed in the fenestration of the fenestrated stent graft.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: June 9, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Darin G. Schaeffer, Scott E. Boatman, Jay A. Dittman, David Ernest Hartley
  • Publication number: 20190358019
    Abstract: A stent graft for placement in a vessel of a patient, the stent graft that has a tubular body of graft material, the tubular body having a proximal inflow end, a distal outflow end, a main lumen therethrough, a longitudinal access, and a sidewall from the first end to the second end. At least one stent is along the length of the tubular body. One or more shaped recesses are formed of a concave or recessed portion of graft material that extends into the lumen of the stent graft. A fenestration is in the recessed portion with a fenestration and an internal branch extends from the or each fenestration toward the proximal end of the tubular body of graft material. The internal branch may have a tubular portion and a funnel portion, wherein the tubular portion extends into the main lumen and the enlarged funnel portion is attached to sidewall and forms the at least one shaped recess.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 28, 2019
    Applicant: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Patent number: 10485651
    Abstract: A stent graft for placement in the thoracic arch of a patient has a tubular body defining a main lumen therethrough, a plurality of zig zag stents along the tubular body, each of the stents comprising a plurality of struts and bends, the bends being between adjacent struts. At least a first stent and an adjacent second stent having at least a pair of adjacent bends on the first stent aligned with an adjacent pair of bends on the second stent, whereby a first pair of adjacent struts of the first stent and a second pair of adjacent struts of the second adjacent stent together define a diamond shape region. A recess is within the diamond shaped region with the recess extending into the lumen of the tubular body. A fenestration extending into the tubular body within the recess in the diamond shaped region and a graft tube leading from the fenestration into the main lumen. There can be one, two or three diamond shaped regions, recesses, fenestrations and graft tubes.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: November 26, 2019
    Assignee: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Publication number: 20190336311
    Abstract: An endoluminal prosthesis system for a branched body lumen comprises a branch vessel prosthesis. The branch vessel prosthesis is deployable within a branch vessel body lumen and comprises a stent having a generally tubular body portion, a flareable proximal end portion, and a coupling portion disposed intermediate the body portion and the flareable portion. The coupling portion is more crush-resistant than the body portion. The flareable proximal end may be disposed within a fenestrated stent graft wit with coupling portion disposed in the fenestration of the fenestrated stent graft.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Darin G. Schaeffer, Scott E. Boatman, Jay A. Dittman, David Ernest Hartley
  • Publication number: 20190314139
    Abstract: A joining arrangement between a main tube (3) and a side arm (5) in a side arm stent graft (1). The side arm (5) is stitched into an aperture (11) in the main tube and is in fluid communication with it. The aperture is triangular, elliptical or rectangular and the side arm is cut off at an angle to leave an end portion having a circumferential length equal to the circumference of the aperture. The side arm can also include a connection socket (76) comprising a first resilient ring (79) around the arm at its end, a second resilient ring (80) spaced apart along the arm from the first ring and a zig zag resilient stent (82) between the first and second rings. The zig-zag resilient stent can be a compression stent. Both the main tube and the side arm are formed from seamless tubular biocompatible graft material.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Inventor: David Ernest Hartley
  • Patent number: 10413435
    Abstract: A pre-loaded stent graft delivery device and stent graft, the stent graft delivery device. The stent graft has at least one fenestration or side arm and the fenestration is preloaded with an indwelling guide wire. The indwelling guide wire are configured to receive the access sheaths. A handle assembly at a distal end of the guide wire catheter. The handle includes a multiport manifold with access ports to the auxiliary lumens in the pusher catheter. Upon deployment of the stent graft into the vasculature of a patient, the indwelling guide wire can be used to facilitate catheterization of a side branch or target vessel through the fenestration or be used to stabilize the access sheath during catheterization, advancement of the access sheath into the target vessel and deployment of a covered or uncovered stent therein through the access sheath.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 17, 2019
    Assignees: The Cleveland Clinic Foundation, Cook Medical Technologies LLC
    Inventors: Roy K. Greenberg, Krasnodar Ivancev, David Ernest Hartley, Werner D. Ducke, Erik E. Rasmussen
  • Patent number: 10413434
    Abstract: A deployment device for deploying a self-expanding branched stent graft. The device includes a branched stent graft retained on an introducer. The introducer includes a main catheter and an auxiliary catheter preloaded within the introducer and extending from distal the distal end of the stent graft, into the lumen of the stent graft and through an internal branch in the graft and out of the fenestration.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 17, 2019
    Assignee: Cook Medical Technologies LLC
    Inventors: David Ernest Hartley, Michael Lawrence-Brown, Wolf Stelter, Krasnodar Ivancev, Eric L. G. Verhoeven
  • Patent number: 10376354
    Abstract: A joining arrangement between a main tube (3) and a side arm (5) in a side arm stent graft (1). The side arm (5) is stitched into an aperture (11) in the main tube and is in fluid communication with it. The aperture is triangular, elliptical or rectangular and the side arm is cut off at an angle to leave an end portion having a circumferential length equal to the circumference of the aperture. The side arm can also include a connection socket (76) comprising a first resilient ring (79) around the arm at its end, a second resilient ring (80) spaced apart along the arm from the first ring and a zig zag resilient stent (82) between the first and second rings. The zig-zag resilient stent can be a compression stent. Both the main tube and the side arm are formed from seamless tubular biocompatible graft material.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: August 13, 2019
    Assignee: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Patent number: 10376395
    Abstract: A stent graft including a tubular wall with at least one fenestration including a peripheral reinforcement around at least part of the fenestration. There can also be a tubular extension. The side arm includes a stent and a cover and extends from and is in fluid communication with the fenestration and the stent graft. The stent may be a self expanding stent. The ring and/or tubular extension provides better support and sealing for an extension arm. The fenestration can be circular or if towards the ends of the stent graft may be in the form of a U-shape with an open end.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 13, 2019
    Assignee: Cook Medical Technologies LLC
    Inventors: David Ernest Hartley, John Lennon Anderson, Michael Lawrence-Brown
  • Patent number: 10363154
    Abstract: The present embodiments provide a stent for use in a medical procedure that comprises a series of proximal apices disposed at a proximal end of the stent and a series of distal apices disposed at a distal end of the stent. A trigger wire is adapted to be coupled to at least one of the proximal apices to restrain a proximal end of the stent during delivery. In a first embodiment, a first proximal apex comprises a bore for receiving the trigger wire, and a second proximal apex, disposed adjacent to the first proximal apex, comprises at least one barb. The trigger wire therefore is only coupled to selected ones of the proximal apices. In an alternative embodiment, a first proximal apex comprises a first bore and a second, adjacent proximal apex comprises a second bore, such that a single trigger wire may be disposed through the first and second bores to restrain the first and second proximal apices during delivery.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 30, 2019
    Assignee: Cook Medical Technologies LLC
    Inventors: William K. Dierking, David Ernest Hartley, Blayne A. Roeder
  • Patent number: 10357386
    Abstract: An endoluminal prosthesis system for a branched body lumen comprises a branch vessel prosthesis. The branch vessel prosthesis is deployable within a branch vessel body lumen and comprises a stent having a generally tubular body portion, a flareable proximal end portion, and a coupling portion disposed intermediate the body portion and the flareable portion. The coupling portion is more crush-resistant than the body portion. The flareable proximal end may be disposed within a fenestrated stent graft wit with coupling portion disposed in the fenestration of the fenestrated stent graft.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: July 23, 2019
    Assignee: Cook Medical Technologies LLC
    Inventors: Darin G. Schaeffer, Scott E. Boatman, Jay A. Dittman, David Ernest Hartley
  • Publication number: 20190192276
    Abstract: An introduction arrangement for a fenestrated or branched stent graft intended for deployment into the lumen of a vessel having a blind vessel extending from it. The introducer has a distal end intended to remain outside a patient in use and a proximal end with a nose cone dilator and an arrangement to retain the branched stent graft distally of the nose cone dilator. A sheath on the introducer extends over the branched stent graft to the nose cone dilator. An indwelling catheter extends from the distal end of the introducer and enters the fenestration or side arm and through to the nose cone dilator, the indwelling catheter has a guide wire extending through it. The guide wire can be extended beyond the nose cone dilator in use before the sheath is withdrawn from the branched stent graft so that it can be snared from the contra-lateral artery.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Applicant: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Publication number: 20190192277
    Abstract: A stent graft for placement in the thoracic arch of a patient has a tubular body defining a main lumen therethrough, a plurality of zig zag stents along the tubular body, each of the stents comprising a plurality of struts and bends, the bends being between adjacent struts. At least a first stent and an adjacent second stent having at least a pair of adjacent bends on the first stent aligned with an adjacent pair of bends on the second stent, whereby a first pair of adjacent struts of the first stent and a second pair of adjacent struts of the second adjacent stent together define a diamond shape region. A recess is within the diamond shaped region with the recess extending into the lumen of the tubular body. A fenestration extending into the tubular body within the recess in the diamond shaped region and a graft tube leading from the fenestration into the main lumen. There can be one, two or three diamond shaped regions, recesses, fenestrations and graft tubes.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Applicant: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Publication number: 20190151073
    Abstract: An introduction arrangement for a fenestrated or branched stent graft intended for deployment into the lumen of a vessel having a blind vessel extending from it. The introducer has a distal end intended to remain outside a patient in use and a proximal end with a nose cone dilator and an arrangement to retain the branched stent graft distally of the nose cone dilator. A sheath on the introducer extends over the branched stent graft to the nose cone dilator. An indwelling catheter extends from the distal end of the introducer and enters the fenestration or side arm and through to the nose cone dilator, the indwelling catheter has a guide wire extending through it. The guide wire can be extended beyond the nose cone dilator in use before the sheath is withdrawn from the branched stent graft so that it can be snared from the contra-lateral artery.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Applicants: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: David Ernest Hartley, John Lennon Anderson, Roy K. Greenberg, Wolf Stelter
  • Patent number: 10251743
    Abstract: A pre-loaded stent graft delivery device and stent graft, the stent graft delivery device. The stent graft has at least one fenestration or side arm and the fenestration is preloaded with an indwelling guide wire. Indwelling access sheaths are provided within auxiliary lumens of a pusher catheter and dilators are preloaded into the access sheaths along with the indwelling guide wire. A handle assembly at a distal end of the guide wire catheter. The handle includes a multiport manifold with access ports to the auxiliary lumens in the pusher catheter. Upon deployment of the stent graft into the vasculature of a patient, the indwelling guide wire can be used to facilitate cathertisation of a side branch or target vessel through the fenestration or be used to stabilise the access sheath during catheterisation, advancement of the access sheath into the target vessel and deployment of a covered or uncovered stent therein through the access sheath.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: April 9, 2019
    Assignees: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: Roy K. Greenberg, Krasnodar Ivancev, David Ernest Hartley, Werner D. Ducke, Erik E. Rasmussen
  • Patent number: 10231822
    Abstract: A stent graft for placement in the thoracic arch of a patient has a tubular body defining a main lumen therethrough, a plurality of zig zag stents along the tubular body, each of the stents comprising a plurality of struts and bends, the bends being between adjacent struts. At least a first stent and an adjacent second stent having at least a pair of adjacent bends on the first stent aligned with an adjacent pair of bends on the second stent, whereby a first pair of adjacent struts of the first stent and a second pair of adjacent struts of the second adjacent stent together define a diamond shape region. A recess is within the diamond shaped region with the recess extending into the lumen of the tubular body. A fenestration extending into the tubular body within the recess in the diamond shaped region and a graft tube leading from the fenestration into the main lumen. There can be one, two or three diamond shaped regions, recesses, fenestrations and graft tubes.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 19, 2019
    Assignee: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley
  • Patent number: 10201414
    Abstract: An introduction arrangement for a fenestrated or branched stent graft (13) intended for deployment into the lumen of a vessel having a blind vessel extending from it. The introducer (1) has a distal end intended to remain outside a patient in use and a proximal end with a nose cone dilator (11) and an arrangement to retain the branched stent graft distally of the nose cone dilator. A sheath (15) on the introducer extends over the branched stent graft to the nose cone dilator. An indwelling catheter (21) extends from the distal end of the introducer and enters the fenestration or side arm and through to the nose cone dilator, the indwelling catheter has a guide wire (29) extending through it. The guide wire can be extended beyond the nose cone dilator in use before the sheath is withdrawn from the branched stent graft so that it can be snared from the contra-lateral artery.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 12, 2019
    Assignees: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: David Ernest Hartley, John Lennon Anderson, Roy K. Greenberg, Wolf Stelter
  • Patent number: 10195059
    Abstract: A composite stent graft has a balloon expandable stent portion, a tubular graft material portion inside or outside of the balloon expandable stent portion and self expanding stents associated with the tubular graft material portion. Part of the balloon expandable stent portion can extend beyond the proximal end of the tubular graft material portion. The tubular graft material can be polytetrafluoroethylene, dacron, polyamide, sub intestinal mucosa or any other suitable biocompatible material. A method of deploying which includes flaring a part of the balloon expandable stent portion is also discussed.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 5, 2019
    Assignee: Cook Medical Technologies LLC
    Inventors: David Ernest Hartley, Michael Lawrence-Brown
  • Publication number: 20190000607
    Abstract: A pre-loaded stent graft delivery device and stent graft, the stent graft delivery device. The stent graft has at least one fenestration or side arm and the fenestration is preloaded with an indwelling guide wire. The indwelling guide wire are configured to receive the access sheaths. A handle assembly at a distal end of the guide wire catheter. The handle includes a multiport manifold with access ports to the auxiliary lumens in the pusher catheter. Upon deployment of the stent graft into the vasculature of a patient, the indwelling guide wire can be used to facilitate cathertization of a side branch or target vessel through the fenestration or be used to stabilize the access sheath during catheterization, advancement of the access sheath into the target vessel and deployment of a covered or uncovered stent therein through the access sheath.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 3, 2019
    Applicants: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: Roy K. Greenberg, Krasnodar Ivancev, David Ernest Hartley, Werner D. Ducke, Erik E. Rasmussen
  • Patent number: 10166095
    Abstract: An introduction arrangement for a fenestrated or branched stent graft (13) intended for deployment into the lumen of a vessel having a blind vessel extending from it. The introducer (1) has a distal end intended to remain outside a patient in use and a proximal end with a nose cone dilator (11) and an arrangement to retain the branched stent graft distally of the nose cone dilator. A sheath (15) on the introducer extends over the branched stent graft to the nose cone dilator. An indwelling catheter (21) extends from the distal end of the introducer and enters the fenestration or side arm and through to the nose cone dilator, the indwelling catheter has a guide wire (29) extending through it. The guide wire can be extended beyond the nose cone dilator in use before the sheath is withdrawn from the branched stent graft so that it can be snared from the contra-lateral artery.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: January 1, 2019
    Assignee: Cook Medical Technologies LLC
    Inventor: David Ernest Hartley