Patents by Inventor David H. Meakin

David H. Meakin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130125958
    Abstract: Embodiments of the present invention generally relate to sealing and supporting an encapsulated photovoltaic module using a supporting frame. In one embodiment, a supporting frame is grounded and configured to support a peripheral portion of an encapsulated photovoltaic module. The peripheral portion of the encapsulated photovoltaic module may be covered and in physical contact with an electrically conductive foam tape, which is configured to protect the encapsulated photovoltaic module from being abraded by the supporting frame while providing a conductive path between a metal vapor barrier layer laminated in the encapsulated photovoltaic module and the supporting frame. The placement of the electrically conductive foam tape between the supporting frame and the encapsulated photovoltaic module insures a constant discharging of the electrostatic charges accumulated on the metal vapor barrier without any arcing.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 23, 2013
    Inventor: David H. Meakin
  • Publication number: 20120260973
    Abstract: Embodiments of the invention generally relate to a busing sub-assembly and methods of forming photovoltaic modules having busing sub-assemblies. The busing sub-assembly generally includes a carrier backsheet and a plurality of conductive ribbons coupled to the carrier backsheet. An electrically insulating cover is disposed over the conductive ribbons and the carrier backsheet. The ends of each conductive ribbon remain exposed for making an electrical connection to the conductive foil or a junction box. Methods of forming photovoltaic modules generally include positioning a flexible backsheet having an opening therethrough and a conductive foil thereon on a support. A busing sub-assembly is disposed on the flexible backsheet over the opening and in electrical contact with the conductive foil. The busing sub-assembly includes the components necessary to bus electrical current from a plurality of solar cells to a junction box, and can be applied to a photovoltaic module in a singe process step.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: John Telle, Brian J. Murphy, David H. Meakin
  • Publication number: 20120240971
    Abstract: Embodiments of the invention generally include a method of forming a low cost flexible substrate having one or more conductive elements that are used to form a low resistance current carrying path used to interconnect a plurality of solar cell devices disposed in a photovoltaic module. A surface of the one or more conductive elements will generally comprise a plurality of patterned electrical contact regions that are used to form part of the electrical circuit that interconnects the plurality of solar cell devices. The plurality of electrical contact points form an electrical circuit that has a lower series resistance versus conventional designs. Embodiments may also include a method and apparatus that form the electrical contact regions on an inexpensive conductive material before electrically connecting the anode or cathode regions of a formed solar cell to the conductive material.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 27, 2012
    Applicant: Applied Material, Inc.
    Inventors: John Telle, William Bottenberg, Brian J. Murphy, David H. Meakin
  • Publication number: 20120234586
    Abstract: Embodiments of the invention generally relate to methods of forming flexible substrates for use in photovoltaic modules. The methods include shaping a metal foil and adhering the metal foil to a flexible backsheet. An optional interlayer dielectric and anti-tarnish material may then be applied to the upper surface of the shaped metal foil disposed on the flexible backsheet. The metal foil may be shaped using die cutting, roller cutting, or laser cutting techniques. The die cutting, roller cutting, and laser cutting techniques simplify the flexible substrate formation processes by eliminating resist-printing and etching steps previously used to pattern metal foils. Additionally, the die cutting, roller cutting, and laser cutting techniques reduce the consumption of consumable materials previously used in the patterning of metal foils.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JOHN TELLE, Brian J. Murphy, David H. Meakin
  • Publication number: 20120234593
    Abstract: Embodiments of the invention generally relate to conductive foils having multiple layers for use in photovoltaic modules and methods of forming the same. The conductive foils generally include a layer of aluminum foil having one or more metal layers with decreased contact resistance disposed thereon. An anti-corrosion material and a dielectric material are generally disposed on the upper surface of the metal layer. The conductive foils may be formed on a carrier prior to construction of a photovoltaic module, and then applied to the photovoltaic module as a conductive foil assembly during construction of the photovoltaic module. Methods of forming the conductive foils generally include adhering an aluminum foil to a carrier, removing native oxides from a surface of the aluminum foil, and sputtering a metal onto the aluminum foil. A dielectric material and an anti-corrosion material may then be applied to the upper surface of the sputtered metal.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: William BOTTENBERG, John Telle, David H. Meakin, Brian J. Murphy
  • Publication number: 20120204938
    Abstract: Methods and systems for interconnecting back contact solar cells. The solar cells preferably have reduced area busbars, or are entirely busbarless, and current is extracted from a variety of points on the interior of the cell surface. The interconnects preferably relieve stresses due to solder reflow and other thermal effects. The interconnects may be stamped and include external or internal structures which are bonded to the solder pads on the solar cell. These structures are designed to minimize thermal stresses between the interconnect and the solar cell. The interconnect may alternatively comprise porous metals such as wire mesh, wire cloth, or expanded metal, or corrugated or fingered strips. The interconnects are preferably electrically isolated from the solar cell by an insulator which is deposited on the cell, placed on the cell as a discrete layer, or laminated directly to desired areas of the interconnect.
    Type: Application
    Filed: March 13, 2012
    Publication date: August 16, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Peter HACKE, David H. Meakin, James M. Gee, Sysavanh Southimath, Brian Murphy
  • Publication number: 20120167954
    Abstract: Embodiments of the invention contemplate the formation of a solar cell module comprising an array of interconnected solar cells that are formed using an automated processing sequence that is used to form a novel solar cell interconnect structure. In one embodiment, the module structure described herein includes a patterned adhesive layer that is disposed on a backsheet to receive and bond a plurality of patterned conducting ribbons thereon. The bonded conducting ribbons are then used to interconnect an array of solar cell devices to form a solar cell module that can be electrically connected to external components that can receive the solar cell module's generated electricity.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: Applied Materials, Inc.
    Inventors: David H. Meakin, Fares Bagh
  • Publication number: 20120167986
    Abstract: Photovoltaic modules comprising back-contact solar cells manufactured using monolithic module assembly techniques comprising a flexible circuit comprising a back sheet and a patterned metallization. The module may comprise busses in electrical contact with the patterned metallization to extract the current. The module may alternatively comprise multilevel metallizations. Interlayer dielectric comprising islands or dots relieves stresses due to thermal mismatch. The use of multiple cord plates enables flexible circuit layouts, thus optimizing the module. The modules preferably comprise a thermoplastic encapsulant and/or hybrid adhesive/solder materials. An ultrathin moisture barrier enables roll-to-roll processing.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: Applied Materials, Inc.
    Inventors: David H. MEAKIN, James M. Gee, Sysavanh Southimath, Brian Murphy, John Telle, Andrew Mark Mitchell
  • Publication number: 20120103388
    Abstract: Embodiments of the invention contemplate the formation of a solar cell module comprising an array of interconnected solar cells that are formed using an automated processing sequence that is used to form a novel planar solar cell interconnect structure. In one embodiment, the module structure described herein includes a patterned adhesive layer that is disposed on a backsheet to receive and bond a plurality of conducting ribbons thereon. The substantially planar bonded conducting ribbons are then used to interconnect an array of solar cell devices to form a solar cell module that can be electrically connected to one or more external components, such as an electrical power grid, satellites, electronic devices or other similar power requiring units. Embodiments of the invention may further provide a roll-to-roll system that is configured to serially form a plurality of solar cell modules over different portions of a backsheet material received from a roll of backsheet material.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: David H. Meakin, Fares Bagh, James Gee, William Bottenberg
  • Publication number: 20110126878
    Abstract: Methods and systems for interconnecting back contact solar cells. The solar cells preferably have reduced area busbars, or are entirely busbarless, and current is extracted from a variety of points on the interior of the cell surface. The interconnects preferably relieve stresses due to solder reflow and other thermal effects. The interconnects may be stamped and include external or internal structures which are bonded to the solder pads on the solar cell. These structures are designed to minimize thermal stresses between the interconnect and the solar cell. The interconnect may alternatively comprise porous metals such as wire mesh, wire cloth, or expanded metal, or corrugated or fingered strips. The interconnects are preferably electrically isolated from the solar cell by an insulator which is deposited on the cell, placed on the cell as a discrete layer, or laminated directly to desired areas of the interconnect.
    Type: Application
    Filed: November 22, 2010
    Publication date: June 2, 2011
    Inventors: Peter Hacke, David H. Meakin, James M. Gee, Sysavanh Southimath, Brian Murphy
  • Publication number: 20110083716
    Abstract: Embodiments of the invention contemplate the formation of a solar cell module comprising an array of interconnected solar cells that are formed using an automated processing sequence that is used to form a novel solar cell interconnect structure. In one embodiment, the module structure described herein includes a patterned adhesive layer that is disposed on a backsheet to receive and bond a plurality of patterned conducting ribbons thereon. The bonded conducting ribbons are then used to interconnect an array of solar cell devices to form a solar cell module that can be electrically connected to external components that can receive the solar cell module's generated electricity.
    Type: Application
    Filed: July 22, 2010
    Publication date: April 14, 2011
    Applicant: Applied Materials, Inc.
    Inventors: David H. Meakin, Fares Bagh
  • Publication number: 20110067751
    Abstract: Photovoltaic modules comprising back-contact solar cells manufactured using monolithic module assembly techniques comprising a flexible circuit comprising a back sheet and a patterned metallization. The module may comprise busses in electrical contact with the patterned metallization to extract the current. The module may alternatively comprise multilevel metallizations. Interlayer dielectric comprising islands or dots relieves stresses due to thermal mismatch. The use of multiple cord plates enables flexible circuit layouts, thus optimizing the module. The modules preferably comprise a thermoplastic encapsulant and/or hybrid adhesive/solder materials. An ultrathin moisture barrier enables roll-to-roll processing.
    Type: Application
    Filed: October 15, 2010
    Publication date: March 24, 2011
    Inventors: David H. Meakin, James M. Gee, Sysavanh Southimath, Brian Murphy, John Telle, Andrew Mark Mitchell
  • Publication number: 20100108119
    Abstract: The present invention comprises methods for manufacturing solar cell modules having improved fault tolerance and the ability to maximize module power output in response to non-optimal operation of one or more solar cells in the module. To improve the fault tolerance, the individual solar cells may each have a bypass diode coupled thereto to that when a single solar cell faults, only the faulted solar cell is affected. In one embodiment, a transistor may be used to improve the fault tolerance of a solar cell module.
    Type: Application
    Filed: November 17, 2009
    Publication date: May 6, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JAMES GEE, DAVID H. MEAKIN, FARES BAGH
  • Publication number: 20100024881
    Abstract: Methods and systems for interconnecting back contact solar cells. The solar cells preferably have reduced area busbars, or are entirely busbarless, and current is extracted from a variety of points on the interior of the cell surface. The interconnects preferably relieve stresses due to solder reflow and other thermal effects. The interconnects may be stamped and include external or internal structures which are bonded to the solder pads on the solar cell. These structures are designed to minimize thermal stresses between the interconnect and the solar cell. The interconnect may alternatively comprise porous metals such as wire mesh, wire cloth, or expanded metal, or corrugated or fingered strips. The interconnects are preferably electrically isolated from the solar cell by an insulator which is deposited on the cell, placed on the cell as a discrete layer, or laminated directly to desired areas of the interconnect.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 4, 2010
    Applicant: ADVENT SOLAR, INC.
    Inventors: Peter Hacke, David H. Meakin, James M. Gee, Brian Murphy
  • Publication number: 20100012172
    Abstract: Photovoltaic modules comprising back-contact solar cells manufactured using monolithic module assembly techniques comprising a flexible circuit comprising a back sheet and a patterned metallization. The module may comprise busses in electrical contact with the patterned metallization to extract the current. The module may alternatively comprise multilevel metallizations. Interlayer dielectric comprising islands or dots relieves stresses due to thermal mismatch. The use of multiple cord plates enables flexible circuit layouts, thus optimizing the module. The modules preferably comprise a thermoplastic encapsulant and/or hybrid adhesive/solder materials. An ultrathin moisture barrier enables roll-to-roll processing.
    Type: Application
    Filed: April 29, 2009
    Publication date: January 21, 2010
    Applicant: Advent Solar, Inc.
    Inventors: David H. Meakin, James M. Gee, Sysavanh Southimath, Brian Murphy, John Telle, Andrew Mark Mitchell
  • Publication number: 20080216887
    Abstract: Methods and systems for interconnecting back contact solar cells. The solar cells preferably have reduced area busbars, or are entirely busbarless, and current is extracted from a variety of points on the interior of the cell surface. The interconnects preferably relieve stresses due to solder reflow and other thermal effects. The interconnects may be stamped and include external or internal structures which are bonded to the solder pads on the solar cell. These structures are designed to minimize thermal stresses between the interconnect and the solar cell. The interconnect may alternatively comprise porous metals such as wire mesh, wire cloth, or expanded metal, or corrugated or fingered strips. The interconnects are preferably electrically isolated from the solar cell by an insulator which is deposited on the cell, placed on the cell as a discrete layer, or laminated directly to desired areas of the interconnect.
    Type: Application
    Filed: December 23, 2007
    Publication date: September 11, 2008
    Applicant: ADVENT SOLAR, INC.
    Inventors: Peter Hacke, David H. Meakin, James M. Gee, Sysavanh Southimath, Brian Murphy
  • Publication number: 20040084079
    Abstract: A thin-film photovoltaic device comprising a hard conductive transparent oxide front contact layer, and photovoltaic modules comprising such devices. The photovoltaic modules of this invention comprising hard conductive transparent front contact layers have excellent resistance to corrosion.
    Type: Application
    Filed: September 3, 2003
    Publication date: May 6, 2004
    Inventors: Ralph Romero, David E. Carlson, Frank S. Willing, David H. Meakin