Patents by Inventor David J. Edell

David J. Edell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090201172
    Abstract: A low power miniaturized telemeter (25, 40-42) provides data from a monitored subject at internal or external locations. A charge integration and pulse stream encoding (30) in the telemeter (25, 40-42) contributes to reduced power consumption. A transmitter (29) in the telemeter (25, 40-42) may be omnidirectional to permit operation without physical obstruction or limitations to movement. A receiver (22) collects transmitted information and may have an adaptive threshold pulse detector to permit further reductions in power usage. The telemeter (25, 40-42) can multiplex monitored parameters on a time division basis to permit trans-mission of multiple data channels. Individual telemeters may have unique transmission frequencies to permit multiple telemeters to be used concurrently without interference. A self-contained power source in the telemeter (25, 40-42) permits long term operation at low power without the need of replacement.
    Type: Application
    Filed: May 16, 2006
    Publication date: August 13, 2009
    Applicant: INNERSEA TECHNOLOGY, INC.
    Inventor: David J. Edell
  • Publication number: 20080228240
    Abstract: A long term bi-directional axon-electronic communication system that provides signaling capability at the level of individual nerve fascicles, bundles of axon and even axons is disclosed. The bi-directional communication system is a modular approach for achieving a chronic enduring interface to peripheral or central nerve atoms for the purpose of restoring function to disabled persons or animals with sensory and/or motor impairments. One embodiment of the communication system includes a multi-channeled nerve-muscle graft chamber for making the nerve-muscle connection. Another embodiment includes a regeneration based microtube nerve interface for bi-directional communication. The interface communication system permits amputees to obtain simultaneous control of multi-degree of freedom powered prostheses by means of naturally produced neural activity from the stamps of the amputated nerves in their residual limbs.
    Type: Application
    Filed: June 15, 2005
    Publication date: September 18, 2008
    Inventors: David J. Edell, Ronald R. Riso
  • Patent number: 6898464
    Abstract: An apparatus and corresponding method for providing data communications to and from a location within a body cavity in which an internal transmitter receives a first data stream from an in vivo sensor, electrode, or transducer. The internal transmitter is configured and arranged to asynchronously modulate the first data stream and to provide as an output a first optical signal carrying the asynchronously modulated first data stream. The apparatus further includes an external receiver that is configured and arranged external to the body cavity such that an optical input to the external receiver is optically coupled to the internal transmitter output and receives the optical signal therefrom. The external receiver asynchronously demodulates the received optical signal and provides as an output at least one signal indicative of the first data stream.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: May 24, 2005
    Assignee: Innersea Technology
    Inventors: David J. Edell, Bruce C. Larson, Sean V. Sexton
  • Patent number: 6680642
    Abstract: A precision current source is disclosed that includes a voltage setting circuit that precisely sets the voltage across a range setting resistor to set the current flowing in a load resistance connected in series with the range setting resistor. The voltage setting circuit precisely sets the voltage across the range setting resistor as a function of an input reference voltage. The voltage setting circuit includes an instrumentation amplifier that determines the voltage across the range setting resistor and the difference between this voltage and the reference voltage is used drive a drive voltage amplifier. The drive voltage amplifier output adjusts to minimize the difference between the reference voltage and the voltage across the range setting resistor. Other embodiments include the use of a DC blocking capacitor to allow only AC coupling and various nulling. circuits to remove any charge buildup on a DC blocking capacitor.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: January 20, 2004
    Assignee: Innersea Technology
    Inventors: David J. Edell, Sean V. Sexton, Ying-Ping Liu
  • Publication number: 20030218495
    Abstract: A precision current source is disclosed that includes a voltage setting circuit that precisely sets the voltage across a range setting resistor to set the current flowing in a load resistance connected in series with the range setting resistor. The voltage setting circuit precisely sets the voltage across the range setting resistor as a function of an input reference voltage. The voltage setting circuit includes an instrumentation amplifier that determines the voltage across the range setting resistor and the difference between this voltage and the reference voltage is used drive a drive voltage amplifier. The drive voltage amplifier output adjusts to minimize the difference between the reference voltage and the voltage across the range setting resistor. Other embodiments include the use of a DC blocking capacitor to allow only AC coupling and various nulling circuits to remove any charge buildup on a DC blocking capacitor.
    Type: Application
    Filed: May 23, 2002
    Publication date: November 27, 2003
    Applicant: InnerSea Technology
    Inventors: David J. Edell, Sean V. Sexton, Ying-Ping Liu
  • Patent number: 6643552
    Abstract: An implantable medical device (IMD) is disclosed that is formed on a substrate composed of liquid crystal polymer (LCP). In one embodiment, the IMD can be an interconnection module for interconnecting an electrode array to an equipment module. The interconnecting module includes conductors disposed on the LCP substrate and coupled to the electrode array, and wherein the conductors are encapsulated using a silicone or LCP encapsulant. In another embodiment, the IMD is an electrode array and interconnect module disposed on an integral LCP substrate. An equipment module can be coupled to the interconnect module. Alternatively, a hybrid electronic circuit can be coupled to the interconnect module for signal processing and conditioning signals received from the electrode array or for providing stimulus signals to the electrode array. In this embodiment, all of the conductors and at least a portion of the electrodes in the electrode array are encapsulated using a silicone or LCP encapsulant.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 4, 2003
    Assignees: Foster-Miller, Inc., Innersea Technology
    Inventors: David J. Edell, Brian Farrell
  • Publication number: 20020198582
    Abstract: An implantable medical device (IMD) is disclosed that is formed on a substrate composed of liquid crystal polymer (LCP). In one embodiment, the IMD can be an interconnection module for interconnecting an electrode array to an equipment module. The interconnecting module includes conductors disposed on the LCP substrate and coupled to the electrode array, and wherein the conductors are encapsulated using a silicone or LCP encapsulant. In another embodiment, the IMD is an electrode array and interconnect module disposed on an integral LCP substrate. An equipment module can be coupled to the interconnect module. Alternatively, a hybrid electronic circuit can be coupled to the interconnect module for signal processing and conditioning signals received from the electrode array or for providing stimulus signals to the electrode array. In this embodiment, all of the conductors and at least a portion of the electrodes in the electrode array are encapsulated using a silicone or LCP encapsulant.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 26, 2002
    Inventors: David J. Edell, Brian Farrell
  • Publication number: 20020107557
    Abstract: An apparatus and corresponding method for providing data communications to and from a location within a body cavity in which an internal transmitter receives a first data stream from an in vivo sensor, electrode, or transducer. The internal transmitter is configured and arranged to asynchronously modulate the first data stream and to provide as an output a first optical signal carrying the asynchronously modulated first data stream. The apparatus further includes an external receiver that is configured and arranged external to the body cavity such that an optical input to the external receiver is optically coupled to the internal transmitter output and receives the optical signal therefrom. The external receiver asynchronously demodulates the received optical signal and provides as an output at least one signal indicative of the first data stream.
    Type: Application
    Filed: October 3, 2001
    Publication date: August 8, 2002
    Inventors: David J. Edell, Bruce C. Larson, Sean V. Sexton
  • Patent number: 6156435
    Abstract: Provided are methods for forming a fluorocarbon polymer thin film on the surface of a structure. In one method, a monomer gas is exposed to a source of heat having a temperature sufficient to pyrolyze the monomer gas and produce a source of reactive CF.sub.2 species in the vicinity of the structure surface. The structure surface is maintained substantially at a temperature lower than that of the heat source to induce deposition and polymerization of the CF.sub.2 species on the structure surface. In another method for forming a fluorocarbon polymer thin film, the structure is exposed to a plasma environment in which a monomer gas is ionized to produce reactive CF.sub.2 species. The plasma environment is produced by application to the monomer gas of plasma excitation power characterized by an excitation duty cycle having alternating intervals in which excitation power is applied and in which no excitation power is applied to the monomer gas.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: December 5, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Scott J. H. Limb, Edward F. Gleason, Herbert H. Sawin, David J. Edell
  • Patent number: 6153269
    Abstract: Provided are methods for forming a fluorocarbon polymer thin film on the surface of a structure. In one method, a monomer gas is exposed to a source of heat having a temperature sufficient to pyrolyze the monomer gas and produce a source of reactive CF.sub.2 species in the vicinity of the structure surface. The structure surface is maintained substantially at a temperature lower than that of the heat source to induce deposition and polymerization of the CF.sub.2 species on the structure surface. In another method for forming a fluorocarbon polymer thin film, the structure is exposed to a plasma environment in which a monomer gas is ionized to produce reactive CF.sub.2 species. The plasma environment is produced by application to the monomer gas of plasma excitation power characterized by an excitation duty cycle having alternating intervals in which excitation power is applied and in which no excitation power is applied to the monomer gas.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: November 28, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Scott J. H. Limb, Edward F. Gleason, Herbert H. Sawin, David J. Edell
  • Patent number: 5888591
    Abstract: Provided are methods for forming a fluorocarbon polymer thin film on the surface of a structure. In one method, a monomer gas is exposed to a source of heat having a temperature sufficient to pyrolyze the monomer gas and produce a source of reactive CF.sub.2 species in the vicinity of the structure surface. The structure surface is maintained substantially at a temperature lower than that of the heat source to induce deposition and polymerization of the CF.sub.2 species on the structure surface. In another method for forming a fluorocarbon polymer thin film, the structure is exposed to a plasma environment in which a monomer gas is ionized to produce reactive CF.sub.2 species. The plasma environment is produced by application to the monomer gas of plasma excitation power characterized by an excitation duty cycle having alternating intervals in which excitation power is applied and in which no excitation power is applied to the monomer gas.
    Type: Grant
    Filed: May 6, 1996
    Date of Patent: March 30, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Scott J.H. Limb, Edward F. Gleason, Herbert H. Sawin, David J. Edell
  • Patent number: 5575813
    Abstract: A low-pressure neural contact structure for contact with neural tissue, for example, neural tissue of the retina within which are ganglion cells to be electrically stimulated. The contact structure comprises a first portion for attachment to a first bodily location, such as the inner surface of the retina, and a second portion interconnected with the first portion via an interconnection and being held in contact with the neural tissue. The interconnection exhibits a weak restoring force which in conjunction with the geometry of said second portion provides a preselected desired pressure of contact against the neural tissue. As adapted for the retina, the interconnection exhibits a weak restoring force developed in response to curvature of the interconnection along the inner radius of the retina.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: November 19, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Edell, Joseph Rizzo, III, John L. Wyatt, Jr.
  • Patent number: 5476494
    Abstract: A low-pressure neural contact structure for contact with neural tissue, for example, neural tissue of the retina within which are ganglion cells to be electrically stimulated. The contact structure comprises a first portion for attachment to a first bodily location, such as the inner surface of the retina, and a second portion interconnected with the first portion via an interconnection and being held in contact with the neural tissue. The interconnection exhibits a weak restoring force which in conjunction with the geometry of said second portion provides a preselected desired pressure of contact against the neural tissue. As adapted for the retina, the interconnection exhibits a weak restoring force developed in response to curvature of the interconnection along the inner radius of the retina.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: December 19, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Edell, Joseph Rizzo, III, John L. Wyatt, Jr.
  • Patent number: 5411540
    Abstract: The invention provides a method for preferentially stimulating neural somas over neural axons located around the somas but not integral with the somas. In the invention, a positive electrical pulse is applied to a region of neural tissue consisting of one or more neural somas to be stimulated and neural axons, and due to the physiology of the somas, they are preferentially stimulated by the electrical pulse over the neural axons not integral with the somas to be stimulated. The preferential soma stimulation provided by the invention achieves the advantage of locally focusing external stimulation such that it may be directed to particular soma locations for indicating location-dependent sensory information. Thus the pulse scheme of the invention may be employed in prosthetic applications directed to, for example, the retinal ganglia neural tissue.
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: May 2, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Edell, John L. Wyatt, Jr., Joseph Rizzo, III
  • Patent number: 5116464
    Abstract: An aqueous solution of cesium hydroxide serves as a highly selective anisotropic etch for semiconductor crystals including silicon. The cesium hydroxide also has a high etch selectivity for tantalum with respect to semiconductor crystals.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: May 26, 1992
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Edell, Lloyd D. Clark, Jr.
  • Patent number: 5078137
    Abstract: A probe adapted for insertion in living tissue for measuring oxygen partial pressure and temperature at a plurality of sites in living tissue is provided. A temperature sensitive resistor is positioned adjacent each of a plurality of oxygen sensors so that the oxygen partial pressure measured can be adjusted for tissue temperature. The probe substrate has thermal properties similar to living tissue and the resistors are formed of a material having a temperature sensitive resistance. Temperature at each temperature sensitive resistor is obtained by measuring resistance with a four point measurement and correlating the resistance to temperature.
    Type: Grant
    Filed: May 5, 1986
    Date of Patent: January 7, 1992
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Edell, Stephen K. Burns, Harry F. Bowman, James C. Weaver
  • Patent number: 5045151
    Abstract: A method of encapsulating a lead bonding pad region of an integrated circuit (such as a sensor used in an implantable medical device) is disclosed. The excapsulant (such as Teflon.TM.-TFE) is mechanically gripped on the surface of the circuit by anchor interlock portions which are held in undercut grooves, micromachined, in a predefined pattern, in the circuit substrate. The encapsulant is held down by the portions in the grooves, forms a tight mechanical seal with the substrate surface and with the insulation around an attached lead, and blocks intrusion of contaminants along the surfaces between these materials or through the encapsulant.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: September 3, 1991
    Assignee: Massachusetts Institute of Technology
    Inventor: David J. Edell
  • Patent number: 4955380
    Abstract: Flexible measurement probes are described for the determination of oxygen partial pressure; temperature and perfusion; and combined measurement of oxygen partial pressure, temperature, and perfusion. The probes are fabricated by patterning a metal coated substrate to form a conductive pattern of ribbon leads, insulating the conductive ribbon leads except for contact openings, and then attaching sensors to the conductive ribbon leads through noble metal plated open contacts. The plated contacts may be used directly to measure oxygen partial pressure.
    Type: Grant
    Filed: December 15, 1988
    Date of Patent: September 11, 1990
    Assignee: Massachusetts Institute of Technology
    Inventor: David J. Edell
  • Patent number: 4741343
    Abstract: Oxygen partial pressure and temperature are measured in living tissue by inserting a thin probe into living tissue. The probe includes a plurality of spatially separated thermal sensors secured to the probe substrate. A plurality of oxygen sensors is positioned along the length of the probe substrate and each oxygen sensor is associated with and positioned adjacent to or is an integral part of one of the thermal sensors. Electrical parameters of the sensors located on the probe are measured and used to determine oxygen partial pressure and to determine temperature at each of a plurality of sites along the probe.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: May 3, 1988
    Assignee: Massachusetts Institute of Technology
    Inventors: H. Frederick Bowman, Stephen K. Burns, David J. Edell, James C. Weaver