Patents by Inventor David J. Hibbard

David J. Hibbard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249755
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the solution lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Application
    Filed: January 4, 2022
    Publication date: August 11, 2022
    Applicant: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: 11400272
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of an apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of the diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 2, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Patent number: 11247036
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the the one or more lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: February 15, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Publication number: 20210228793
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 29, 2021
    Applicant: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. Mcgill, Simon C. Helmore
  • Patent number: 10881778
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: January 5, 2021
    Assignee: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Publication number: 20190060629
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Patent number: 10201647
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: February 12, 2019
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Publication number: 20180361048
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 20, 2018
    Applicant: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Publication number: 20180256803
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the the one or more lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 13, 2018
    Applicant: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: 10058694
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 28, 2018
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Patent number: 9987410
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the one or more lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: June 5, 2018
    Assignee: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: 9981079
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: May 29, 2018
    Assignee: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Patent number: 9861732
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. A fluid trap of a peritoneal dialysis cycler may have a valved connection to a vacuum source or a positive pressure source. The fluid trap can be connected to the vacuum source in order to sealingly engage a flexible membrane of a pumping cassette to a control surface of the cycler during a therapy. Any fluid entering a space between the membrane and control surface can be drawn away and collected in the fluid trap. The fluid trap alternatively can be connected to a positive pressure source in order to aid in separating the membrane from the control surface to facilitate removal of the pumping cassette from the cycler. The fluid trap may include a liquid detection sensor.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 9, 2018
    Assignee: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Publication number: 20170157310
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 8, 2017
    Applicant: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Publication number: 20160101278
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Application
    Filed: June 5, 2015
    Publication date: April 14, 2016
    Applicant: DEKA Products Limited Partner
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Publication number: 20160101227
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Application
    Filed: June 5, 2015
    Publication date: April 14, 2016
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Publication number: 20150231320
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the solution lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: 9078971
    Abstract: A medical treatment system, such as peritoneal dialysis system, may include control and other features to enhance patient comfort and ease of use. For example, a peritoneal dialysis system may include a control system that can adjust the volume of fluid infused into the peritoneal cavity to prevent the intraperitoneal fluid volume from exceeding a pre-determined amount. The control system can adjust by adding one or more therapy cycles, allowing for fill volumes during each cycle to be reduced. The control system may continue to allow the fluid to drain from the peritoneal cavity as completely as possible before starting the next therapy cycle. The control system may also adjust the dwell time of fluid within the peritoneal cavity during therapy cycles in order to complete a therapy within a scheduled time period.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 14, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Jacob W. Scarpaci, Robert J. Bryant, Jr., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore
  • Patent number: 9022969
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the one or more lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 5, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: D664660
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: July 31, 2012
    Assignee: DEKA Products Limited Partnership
    Inventors: Katherine M. Hickey, James D. Dale, Jacob W. Scarpaci, David J. Hibbard, David E. Collins