Patents by Inventor David J. Rauscher

David J. Rauscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6410663
    Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in copolymer product. The catalyst system includes a conventional supported Ziegler-Natta catalyst in combination with an electron donor described by the formula: wherein R1 is a linear alkyl group attached to the silicon atom; R2 and R3 are alkyl or aryl groups and R4 is a linear alkyl attached to the silicon atom, R1 and R4 are the same or different. R1 and R4 are preferably linear carbon groups of 4-13 carbon atoms, more preferably 4-7 carbon atoms; most preferably R1 and R4 are the same and are n-butyl groups. The system exhibits good control over the melt flow index of the copolymer products.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 25, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Theodore G. Harris
  • Publication number: 20010007008
    Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in copolymer product.
    Type: Application
    Filed: February 27, 2001
    Publication date: July 5, 2001
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Theodore G. Harris
  • Patent number: 6239058
    Abstract: The invention provides a process for commercial production of syndiotactic polyolefins using a metallocene catalyst supported on silica treated with MAO. The invention includes contacting the supported metallocene catalyst with a trialkylaluminum and aging the catalyst 12 to 24 hours prior to polymerization.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: May 29, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Christopher G. Bauch, B. R. Reddy, David J. Rauscher, Kevin P. McGovern
  • Patent number: 6211109
    Abstract: The invention provides a process for commercial production of syndiotactic polyolefins using a metallocene catalyst supported on silica treated with MAO. The invention includes contacting the supported metallocene catalyst with an aluminum alkyl and aging the catalyst prior to polymerization. In addition, the catalyst is prepolymerized in a tubular reactor prior to being introduced into the polymerization reaction zone. The treated silica is produced by removing water to a level of 0.5-1.08%, slurrying in a nonpolar solvent, adding an alumoxane, heating to reflux, cooling the slurry, and separating the solid product.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: April 3, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Christopher G. Bauch, B. R. Reddy, David J. Rauscher, Kevin P. McGovern
  • Patent number: 6166153
    Abstract: The invention provides a process for commercial production of syndiotactic polyolefins using a metallocene catalyst supported on silica treated with MAO. The invention includes contacting the supported metallocene catalyst with an aluminum alkyl and aging the catalyst prior to polymerization. In addition, the catalyst is prepolymerized in a tubular reactor prior to being introduced into the polymerization reaction zone.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: December 26, 2000
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Christopher G. Bauch, B. Raghava Reddy, David J. Rauscher, Kevin P. McGovern
  • Patent number: 6156854
    Abstract: An olefin polymerization process in which at least two introductions of hydrogen are made during the olefin polymerization reaction. Suitable catalysts include metallocenes of the general formula (Cp).sub.m TiX.sub.n, wherein Cp is a substituted or unsubstituted cyclopentadienyl ring, X is a halogen, m=1-2, n=2-3, and wherein m+n=4, and conventional Ziegler-Natta catalysts blended with or modified by such metallocenes.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: December 5, 2000
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher
  • Patent number: 5789502
    Abstract: The present invention provides a process for control of desired properties in the polymer product. The catalyst system used in the process includes a supported metallocene catalyst precursor in combination with an oxyorganoaluminum. The process can be applied to the co-polymerization of propylene and ethylene. The randomness of the ethylene incorporation of the co-polymer product is increased as the amount of ethylene in the feed is increased. The amount of ethylene in the feed is up to 6 wt. % with a resulting amount of ethylene incorporated into the copolymer product up to 4 mole %.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: August 4, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Theodore Harris, The Vu, Margarito Lopez
  • Patent number: 5739220
    Abstract: An olefin polymerization process in which at least two introductions of hydrogen are made during the olefin polymerization reaction. Suitable catalysts include metallocenes of the general formula (Cp).sub.m TiX.sub.n, wherein Cp is a substituted or unsubstituted cyclopentadienyl ring, X is a halogen, m=1-2, n=2-3, and wherein m+n=4, and conventional Ziegler-Natta catalysts blended with or modified by such metallocenes.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: April 14, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher
  • Patent number: 5432139
    Abstract: Processes for the formulation of Ziegler-type catalysts from a transition metal component, an electron donor and a co-catalyst which are sequentially mixed together. The co-catalyst is initially contacted with either of the transition metal catalyst or the electron donor for a first contact time of 5-120 seconds. This mixture is then contacted with the remainder of the electron donor or transition metal component for a second contact time of less and 110 seconds. The three component system is then used in olefin polymerization. The olefin contacting step can involve an initial pre-polymerization reaction. A specific order of addition involves mixture of the transition metal component and the co-catalyst component for a contact time of 5-120 seconds followed by contact with an electron donor component for no more than 30 seconds. Another order of addition involves initially contacting the electron donor with the co-catalyst.
    Type: Grant
    Filed: March 4, 1992
    Date of Patent: July 11, 1995
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 5395810
    Abstract: This invention concerns a making a catalyst system comprising at least one homogeneous catalyst and at least one heterogeneous catalyst, specifically, a metallocene catalyst and a conventional Ziegler-Natta catalyst, respectively. This invention is useful for making a catalyst for the polymerization of any polymer in which separate polymerizations with a homogeneous catalyst and with a heterogeneous catalyst are possible, but preferably, polymerization of olefins, more preferably, .alpha.-olefins, and, most preferably, propylene. This invention provides a catalyst system which facilitates use of a homogeneous catalyst but eliminates the disadvantages of such a system. This invention produces a polymer with molecular weight distribution (MWD) as broad or broader than the MWD of the heterogeneous catalyst alone. Hydrogen can be used to control molecular weight distribution of a polymer produced with this invention.
    Type: Grant
    Filed: January 27, 1993
    Date of Patent: March 7, 1995
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Michael J. Elder, Baireddy R. Reddy, David J. Rauscher
  • Patent number: 5378672
    Abstract: A system for combining the components of a multi-component catalyst system comprising at least four chambers with flow passageway means connecting the chambers in series. The catalyst components can include a transition metal, an electron donor and a co-catalyst, which are sequentially mixed together in the course of formulating a Ziegler-type system to be charged to an olefin polymerization reactor. The passages between the second and third chambers have valves. Each of the second and fourth chambers is provided with an inlet opening separate from the interconnecting flow passages and a vent opening separate from the inlet openings and the interconnecting flow passages. The chamber also has an outlet opening. This system also has flushing inlet passages for each of the four chambers which are connected to a manifold adapted to be connected to a source of nitrogen.
    Type: Grant
    Filed: March 4, 1992
    Date of Patent: January 3, 1995
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 5330947
    Abstract: This invention relates to a catalyst system using a boron alkyl in combination with an aluminum alkyl as a co-catalyst, a process for making the catalyst system and a process using the catalyst system for polymerization of olefins, especially .alpha.-olefins, such as propylene. While both boron alkyls and aluminum alkyls are known as co-catalysts separately, use of a boron alkyl with an aluminum alkyl as co-catalysts in olefin polymerization resulted in an unexpected increase in polymer yield. An increase in yield is accomplished without any increase in the amount of aluminum residue in the polymer product. The preferred boron alkyl is triethyl boron. The preferred aluminum alkyl is TEAl.
    Type: Grant
    Filed: October 15, 1991
    Date of Patent: July 19, 1994
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 5308818
    Abstract: The present invention provides a catalyst system that exhibits unprecedented catalyst efficiencies and control of desired properties in the polymer product. The catalyst system includes a new generation titanium catalyst in combination with an electron donor described by the formula: ##STR1## wherein R.sub.1 is an alkyl or cycloalkyl group containing a primary or secondary carbon atom attached to the silicon atom; R.sub.2 and R.sub.3 are alkyl or aryl groups; and R.sub.4 is an alkyl or cycloalkyl group with a primary or secondary carbon atom attached to the silicon atom. The system has a catalyst efficiency of over 30 kg/g-cat.h as the Si/Ti mole ratio varies from 4-20 in the system. The system easily achieves efficiencies over 30 kg/g-cat.h. The system also exhibits good control over the xylene solubles of the polymer products.
    Type: Grant
    Filed: June 8, 1992
    Date of Patent: May 3, 1994
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher
  • Patent number: 5254517
    Abstract: This invention relates to a catalyst system using a diethylaluminum alkoxide-aluminum alkyl cocatalyst and to a process for polymerization of olefins using the catalyst system. Use of this catalyst system increases polymerization yield. The diethylaluminum alkoxide is preferably diethylaluminum ethoxide and the aluminum alkyl is preferably triethyl aluminum. The mole-to-mole ratio of diethylaluminum alkoxide to aluminum alkyl ranges from 0.05 to 0.2. This invention is effective for the aluminum/transition metal ratio for the polymerization of olefins ranges from about 100 to about 500. Polymerization yield increases of greater than 10% are realized.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: October 19, 1993
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamsoum, David J. Rauscher, Shabbir Malbari
  • Patent number: 5242876
    Abstract: This invention concerns a catalyst system comprising at least one homogeneous catalyst and at least one heterogeneous catalyst, specifically, a metallocene catalyst and a conventional Ziegler-Natta catalyst, respectively. This invention is useful in the polymerization of any polymer in which separate polymerizations with a homogeneous catalyst and with a heterogeneous catalyst are possible, but preferably, polymerization of olefins, more preferably, .alpha.-olefins, and, most preferably, propylene. This invention provides a catalyst system which facilitates use of a homogeneous catalyst but eliminates the disadvantages of such a system. This invention produces a polymer with molecular weight distribution (MWD) as broad or broader than the MWD of the heterogeneous catalyst alone. Hydrogen can be used to control molecular weight distribution of a polymer produced with this invention.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: September 7, 1993
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Michael J. Elder, Baireddy R. Reddy, David J. Rauscher