Patents by Inventor David James Ryan
David James Ryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7149238Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.Type: GrantFiled: April 21, 2006Date of Patent: December 12, 2006Assignee: Cingular Wireless II, LLCInventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnic Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
-
Patent number: 7106781Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.Type: GrantFiled: August 3, 2001Date of Patent: September 12, 2006Assignee: Cingular Wireless II, LLCInventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
-
Patent number: 7095708Abstract: A fixed wireless system (FWS) utilizing Orthogonal Frequency Division Multiplexing (OFDM) communication techniques is spectrally efficient and responsive to communications involving both voice and high speed data, such as Internet data. The FWS includes a wireless base unit; a plurality of fixed wireless remote units; a plurality of wireless data traffic channels available between the wireless base unit and the plurality of fixed wireless remote units; and a plurality of wireless voice traffic channels available between the wireless base unit and the plurality of fixed wireless remote units. Each wireless traffic channel is identifiable by a unique combination of frequency and time slots. Each wireless data traffic channel is used for carrying high speed data in addressed data packets to and from the plurality of fixed wireless remote units.Type: GrantFiled: June 14, 2000Date of Patent: August 22, 2006Assignee: Cingular Wireless II, LLCInventors: Siavash Alamouti, Jeffrey Battin, David B. Gibbons, James Timothy Golden, Michael R. Hirano, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Steven E. McMeekin, David J. Nix, David James Ryan, Gregory J. Veintimilla, Hongliang Zhang
-
Patent number: 6643281Abstract: A highly bandwidth-efficient communications method is disclosed that enables remote stations to synchronize in time and frequency to their serving base station. The invention enables a base station and its remote stations in a cell to synchronize in a noisy environment where signals interfere from other base stations and remote stations in other cells. The base station forms a forward synchronization burst that includes a plurality of tone frequencies arranged in a distinctive orthogonal frequency division multiplexed pattern unique to the base station. The unique pattern enables a remote station to distinguish the base station's bursts from other signals present in a crowded area. The distinctive orthogonal frequency division multiplexed pattern can be a Hadamard code pattern, for example.Type: GrantFiled: March 5, 1998Date of Patent: November 4, 2003Assignee: AT&T Wireless Services, Inc.Inventor: David James Ryan
-
Patent number: 6639935Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic redundancy code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.Type: GrantFiled: July 12, 2001Date of Patent: October 28, 2003Assignee: AT&T Wireless Services, Inc.Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
-
Patent number: 6621851Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.Type: GrantFiled: November 28, 2000Date of Patent: September 16, 2003Assignee: AT&T Wireless Services, Inc.Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
-
Patent number: 6480522Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.Type: GrantFiled: November 28, 2000Date of Patent: November 12, 2002Assignee: AT&T Wireless Services, Inc.Inventors: Elliott Hoole, Mary Jesse, Robert G. Mechaley, Jr., David James Ryan, David Stephenson
-
Publication number: 20020122465Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.Type: ApplicationFiled: August 3, 2001Publication date: September 5, 2002Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
-
Patent number: 6359923Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective rev transmission systems that adapt or can be adapted to the radio environment.Type: GrantFiled: December 18, 1997Date of Patent: March 19, 2002Assignee: AT&T Wireless Services, Inc.Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
-
Patent number: 6333937Abstract: Each remote station in a wireless network cell that uses a collision oriented multiple access scheme, counts the number of retries attempted to gain access to the base station for a particular message. The accumulated value of the number of retries is then inserted in a retry count field of the access request message. After one or more retries, the base station successfully receives the access request message. The base station runs a common access channel allocation manager program that adaptively provides additional channels to the remote station, depending on the number of retries the remote station required to successfully transmit the access request message. In this manner, the base station has accurate information about the reduced performance that the remote stations suffer during an interval of high usage, to enable the base station to adaptively provide additional channels to the remote stations.Type: GrantFiled: March 5, 1998Date of Patent: December 25, 2001Assignee: AT&T Wireless Services, Inc.Inventor: David James Ryan
-
Publication number: 20010040912Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic redundancy code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.Type: ApplicationFiled: July 12, 2001Publication date: November 15, 2001Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
-
Patent number: 6289037Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.Type: GrantFiled: February 24, 1997Date of Patent: September 11, 2001Assignee: AT&T Wireless Services Inc.Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
-
Patent number: 6134261Abstract: A highly bandwidth-efficient communications method is disclosed, to maximize the signal-to-interference-noise ratio (SINR) of transmissions from a base station to a remote station in a wireless communications system. The method is used for base stations that have a plurality of antenna elements that are capable of spatial beam steering by altering the relative phase of transmission of signals from the respective elements. The method of the invention is based on providing calibration frames that sequentially transmit calibration bursts from the respective antenna elements for a particular destination remote station. The calibration bursts include a plurality of tone frequencies arranged in a distinctive orthogonal frequency division multiplexed pattern unique to the base station. The unique pattern enables a remote station to distinguish the base station's bursts from other signals present in a crowded area.Type: GrantFiled: March 5, 1998Date of Patent: October 17, 2000Assignee: AT&T Wireless Svcs. IncInventor: David James Ryan