Patents by Inventor David James Ryan

David James Ryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7149238
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: December 12, 2006
    Assignee: Cingular Wireless II, LLC
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnic Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 7106781
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 12, 2006
    Assignee: Cingular Wireless II, LLC
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 7095708
    Abstract: A fixed wireless system (FWS) utilizing Orthogonal Frequency Division Multiplexing (OFDM) communication techniques is spectrally efficient and responsive to communications involving both voice and high speed data, such as Internet data. The FWS includes a wireless base unit; a plurality of fixed wireless remote units; a plurality of wireless data traffic channels available between the wireless base unit and the plurality of fixed wireless remote units; and a plurality of wireless voice traffic channels available between the wireless base unit and the plurality of fixed wireless remote units. Each wireless traffic channel is identifiable by a unique combination of frequency and time slots. Each wireless data traffic channel is used for carrying high speed data in addressed data packets to and from the plurality of fixed wireless remote units.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: August 22, 2006
    Assignee: Cingular Wireless II, LLC
    Inventors: Siavash Alamouti, Jeffrey Battin, David B. Gibbons, James Timothy Golden, Michael R. Hirano, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Steven E. McMeekin, David J. Nix, David James Ryan, Gregory J. Veintimilla, Hongliang Zhang
  • Patent number: 6643281
    Abstract: A highly bandwidth-efficient communications method is disclosed that enables remote stations to synchronize in time and frequency to their serving base station. The invention enables a base station and its remote stations in a cell to synchronize in a noisy environment where signals interfere from other base stations and remote stations in other cells. The base station forms a forward synchronization burst that includes a plurality of tone frequencies arranged in a distinctive orthogonal frequency division multiplexed pattern unique to the base station. The unique pattern enables a remote station to distinguish the base station's bursts from other signals present in a crowded area. The distinctive orthogonal frequency division multiplexed pattern can be a Hadamard code pattern, for example.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: November 4, 2003
    Assignee: AT&T Wireless Services, Inc.
    Inventor: David James Ryan
  • Patent number: 6639935
    Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic redundancy code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: October 28, 2003
    Assignee: AT&T Wireless Services, Inc.
    Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
  • Patent number: 6621851
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 16, 2003
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6480522
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 12, 2002
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Elliott Hoole, Mary Jesse, Robert G. Mechaley, Jr., David James Ryan, David Stephenson
  • Publication number: 20020122465
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Application
    Filed: August 3, 2001
    Publication date: September 5, 2002
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6359923
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective rev transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 19, 2002
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6333937
    Abstract: Each remote station in a wireless network cell that uses a collision oriented multiple access scheme, counts the number of retries attempted to gain access to the base station for a particular message. The accumulated value of the number of retries is then inserted in a retry count field of the access request message. After one or more retries, the base station successfully receives the access request message. The base station runs a common access channel allocation manager program that adaptively provides additional channels to the remote station, depending on the number of retries the remote station required to successfully transmit the access request message. In this manner, the base station has accurate information about the reduced performance that the remote stations suffer during an interval of high usage, to enable the base station to adaptively provide additional channels to the remote stations.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: December 25, 2001
    Assignee: AT&T Wireless Services, Inc.
    Inventor: David James Ryan
  • Publication number: 20010040912
    Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic redundancy code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.
    Type: Application
    Filed: July 12, 2001
    Publication date: November 15, 2001
    Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
  • Patent number: 6289037
    Abstract: A new method makes the most efficient use of the scarce spectral bandwidth in a wireless discrete multitone spread spectrum communications system. Each remote station and each base station in the network prepares an error detection field, such as a cyclic code (CRC), on each block of data to be transmitted over the traffic channels. The sending station prepares an error detection message for transmission over the link control channel of the network. The sending station prepares the error detection message by forming a link control channel vector that will be spread using the discrete multitone spread spectrum (DMT-SS) protocol to distribute the data message over a plurality of discrete tone frequencies, forming a spread signal for the link control channel. A link control channel is associated with communications session using the traffic channels. The instant of transmission of the error detection message is allowed to be different from the instant of transmission of the data message.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: September 11, 2001
    Assignee: AT&T Wireless Services Inc.
    Inventors: David Gibbons, Robert Lee Maxwell, David James Ryan
  • Patent number: 6134261
    Abstract: A highly bandwidth-efficient communications method is disclosed, to maximize the signal-to-interference-noise ratio (SINR) of transmissions from a base station to a remote station in a wireless communications system. The method is used for base stations that have a plurality of antenna elements that are capable of spatial beam steering by altering the relative phase of transmission of signals from the respective elements. The method of the invention is based on providing calibration frames that sequentially transmit calibration bursts from the respective antenna elements for a particular destination remote station. The calibration bursts include a plurality of tone frequencies arranged in a distinctive orthogonal frequency division multiplexed pattern unique to the base station. The unique pattern enables a remote station to distinguish the base station's bursts from other signals present in a crowded area.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: October 17, 2000
    Assignee: AT&T Wireless Svcs. Inc
    Inventor: David James Ryan