Patents by Inventor David John Kubinski

David John Kubinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230304430
    Abstract: Methods and systems are provided for a vehicle. In one example, a method may include acquiring measurements from at least one exhaust emission sensor of the vehicle, the exhaust emission sensor positioned to measure one of NOx, NH3, and O2 levels in exhaust gas of the vehicle. The measurements may be input into a machine learning model trained to output a predicted real-time amount of at least one exhaust gas constituent in the exhaust gas and operations of an emissions aftertreatment system may be assessed and adjusted based on the predicted real-time amount of the at least one exhaust gas constituent.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Inventors: Nathan Kempema, Conner Sharpe, David John Kubinski, Xiao Wu, Mehrdad Shahabi
  • Patent number: 10605137
    Abstract: Methods and systems are provided for detecting a missing exhaust catalyst based on water adsorption and related exothermic temperature rise by the catalyst. In one example, a method may include indicating an exhaust catalyst missing in response to an estimated exhaust temperature profile being different from an expected exhaust temperature profile. The estimated exhaust temperature profile may be based on exhaust temperature upstream and downstream of the catalyst.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 31, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, Michael Brendan Hopka, In Kwang Yoo, David John Kubinski
  • Patent number: 10364717
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 30, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: David John Kubinski
  • Patent number: 10309944
    Abstract: Particulate matter (PM) sensors and diagnostics performed using the PM sensors are disclosed. The PM sensors and diagnostics may be used in exhaust systems, such as vehicle exhaust systems, to detect soot. In at least one embodiment, an electrostatic particulate matter (PM) sensor is provided including first and second spaced apart electrodes forming a bulk gap therebetween having a bulk distance and a localized gap therebetween having a localized distance less than the bulk distance. A controller may be configured to control a voltage between the electrodes to induce an electrostatic discharge at the localized gap at a lower voltage than at the bulk gap. Various diagnostics may be performed using the disclosed PM sensors, including a wiring/continuity diagnostic, a soot detection plausibility diagnostic, and/or an installation diagnostic.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: June 4, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Brendan Hopka, David John Kubinski, David Bilby, Michiel J. Van Nieuwstadt
  • Patent number: 10273906
    Abstract: Methods and systems are provided for controlling exhaust catalyst temperature during an engine cold-start by water injection. In one example, a method may include during the engine cold-start, injecting water into an intake of an engine based on the exhaust catalyst temperature and accumulating water molecules within an exhaust catalyst to generate heat within the exhaust catalyst. In this way, by generating and storing heat within the exhaust catalyst, the exhaust catalyst may be heated up rapidly, thus reducing catalyst light-off time.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 30, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael McQuillen, Daniel A. Makled, David John Kubinski, Richard E. Soltis
  • Publication number: 20180291843
    Abstract: Methods and systems are provided for controlling exhaust catalyst temperature during an engine cold-start by water injection. In one example, a method may include during the engine cold-start, injecting water into an intake of an engine based on the exhaust catalyst temperature and accumulating water molecules within an exhaust catalyst to generate heat within the exhaust catalyst. In this way, by generating and storing heat within the exhaust catalyst, the exhaust catalyst may be heated up rapidly, thus reducing catalyst light-off time.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventors: Michael McQuillen, Daniel A. Makled, David John Kubinski, Richard E. Soltis
  • Publication number: 20180283248
    Abstract: Methods and systems are provided for detecting a missing exhaust catalyst based on water adsorption and related exothermic temperature rise by the catalyst. In one example, a method may include indicating an exhaust catalyst missing in response to an estimated exhaust temperature profile being different from an expected exhaust temperature profile. The estimated exhaust temperature profile may be based on exhaust temperature upstream and downstream of the catalyst.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Devesh Upadhyay, Michael Brendan Hopka, In Kwang Yoo, David John Kubinski
  • Patent number: 10048188
    Abstract: Systems and methods are described for sensing particulate matter in an exhaust system of a vehicle. An example system comprises a first outer tube with a plurality of intake apertures on an upstream surface, a second inner tube with a plurality of intake apertures on a downstream surface, and a particulate matter sensor placed within the second inner tube. The second inner tube may be positioned within the first outer tube such that a central axis of the second inner tube is parallel to a central axis of the first outer tube.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: August 14, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiaogang Zhang, Jianwen James Yi, David John Kubinski
  • Publication number: 20180067090
    Abstract: Particulate matter (PM) sensors and diagnostics performed using the PM sensors are disclosed. The PM sensors and diagnostics may be used in exhaust systems, such as vehicle exhaust systems, to detect soot. In at least one embodiment, an electrostatic particulate matter (PM) sensor is provided including first and second spaced apart electrodes forming a bulk gap therebetween having a bulk distance and a localized gap therebetween having a localized distance less than the bulk distance. A controller may be configured to control a voltage between the electrodes to induce an electrostatic discharge at the localized gap at a lower voltage than at the bulk gap. Various diagnostics may be performed using the disclosed PM sensors, including a wiring/continuity diagnostic, a soot detection plausibility diagnostic, and/or an installation diagnostic.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 8, 2018
    Inventors: Michael Brendan HOPKA, David John KUBINSKI, David BILBY, Michiel J. VAN NIEUWSTADT
  • Publication number: 20180023431
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 25, 2018
    Inventor: David John Kubinski
  • Patent number: 9803524
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 31, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: David John Kubinski
  • Patent number: 9745909
    Abstract: Methods are disclosed for determining an oxidation state of a catalyst using RF signals. The method may include introducing radio-frequency signals into a resonant chamber including a catalyst, modulating an air-fuel ratio of an engine upstream of the catalyst to generate a sequence of uniform pulses and at least one altered pulse that differs from the uniform pulses, and comparing a frequency response of two or more resonant modes of the radio-frequency signals during the sequence to determine an oxidation state of the catalyst. The method may further include adjusting the air-fuel ratio based on the comparing step. Two or more altered pulses may be inserted into the air-fuel ratio sequence. The altered pulse may have a pulse width and/or amplitude that differs from the uniform pulses. The methods may be used to adjust an air-fuel ratio to correct or impart a bias.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 29, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: David John Kubinski
  • Publication number: 20170096956
    Abstract: Methods are disclosed for determining an oxidation state of a catalyst using RF signals. The method may include introducing radio-frequency signals into a resonant chamber including a catalyst, modulating an air-fuel ratio of an engine upstream of the catalyst to generate a sequence of uniform pulses and at least one altered pulse that differs from the uniform pulses, and comparing a frequency response of two or more resonant modes of the radio-frequency signals during the sequence to determine an oxidation state of the catalyst. The method may further include adjusting the air-fuel ratio based on the comparing step. Two or more altered pulses may be inserted into the air-fuel ratio sequence. The altered pulse may have a pulse width and/or amplitude that differs from the uniform pulses. The methods may be used to adjust an air-fuel ratio to correct or impart a bias.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Inventor: David John KUBINSKI
  • Publication number: 20160223432
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 4, 2016
    Inventor: David John Kubinski
  • Patent number: 9341131
    Abstract: Various systems and methods are described for controlling operation of a motor vehicle based on a sensor. One example method comprises receiving sensed parameter data from the sensor, receiving calibration data from the sensor, and adjusting a vehicle operating parameter in response to the sensed parameter data and the calibration data.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 17, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Dave Charles Weber, David John Kubinski, Michiel J. Van Nieuwstadt
  • Patent number: 9217350
    Abstract: Various systems and methods for detecting exhaust reductant injector degradation based on an exhaust NOx sensor are disclosed. In one example, degradation of the reductant injector is indicated when an actual NOx sensor output differs from an expected NOx sensor output by more than a threshold amount under engine off conditions.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 22, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, In Kwang Yoo, David John Kubinski, Jacobus Hendrik Visser, Garth Michael Meyer, Michiel J. Van Nieuwstadt
  • Publication number: 20150355067
    Abstract: Systems and methods are described for sensing particulate matter in an exhaust system of a vehicle. An example system comprises a first outer tube with a plurality of intake apertures on an upstream surface, a second inner tube with a plurality of intake apertures on a downstream surface, and a particulate matter sensor placed within the second inner tube. The second inner tube may be positioned within the first outer tube such that a central axis of the second inner tube is parallel to a central axis of the first outer tube.
    Type: Application
    Filed: February 17, 2015
    Publication date: December 10, 2015
    Inventors: Xiaogang Zhang, Jianwen James Yi, David John Kubinski
  • Publication number: 20150128565
    Abstract: Various systems and method for detecting exhaust NOx sensor degradation are disclosed. In one example, degradation of the NOx sensor is indicated responsive to reductant injection in an exhaust passage under engine off conditions. For example, degradation of the NOx sensor is indicated when an actual NOx sensor output differs from an expected NOx sensor output by more than a threshold amount.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, In Kwang Yoo, Michiel J. Van Nieuwstadt, David John Kubinski
  • Publication number: 20150128564
    Abstract: Various systems and methods for detecting exhaust reductant injector degradation based on an exhaust NOx sensor are disclosed. In one example, degradation of the reductant injector is indicated when an actual NOx sensor output differs from an expected NOx sensor output by more than a threshold amount under engine off conditions.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, In Kwang Yoo, David John Kubinski, Jacobus Hendrik Visser, Garth Michael Meyer, Michiel J. Van Nieuwstadt
  • Patent number: 9010087
    Abstract: Various systems and method for detecting exhaust NOx sensor degradation are disclosed. In one example, degradation of the NOx sensor is indicated responsive to reductant injection in an exhaust passage under engine off conditions. For example, degradation of the NOx sensor is indicated when an actual NOx sensor output differs from an expected NOx sensor output by more than a threshold amount.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: April 21, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Devesh Upadhyay, In Kwang Yoo, Michiel J. Van Nieuwstadt, David John Kubinski