Patents by Inventor David L. Rollins

David L. Rollins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7079780
    Abstract: An improved analog optical system which provides improved dynamic range as well as sensitivity relative to known analog optical systems. The analog optical system includes a Mach-Zehnder modulator (MZM) operated with a low bias to improve sensitivity. In accordance with an important aspect of the invention, the optical system utilizes two optical wavelengths with two effective bias points to cancel even ordered distortion associated with low biasing. Two lasers having different wavelengths are applied to the Mach-Zehnder modulator by way of a wavelength division multiplexer (WDM). Alternately, a single laser producing two optical carriers having different wavelengths could be used in place of the two single wavelength lasers and the WDM. The modulator bias control circuit forces two optical carriers to two bias points on opposite sides of the minimum bias point thus, providing equal modulation depth with opposite sign on each of the two optical carriers.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: July 18, 2006
    Assignee: Northrop Grumman Corporation
    Inventor: David L. Rollins
  • Patent number: 6868236
    Abstract: An apparatus and method for combining multiple optical beams into mode-scrambled optical signals. In one embodiment, the apparatus includes a plurality of laser beam sources, each to produce a modulated optical beam. A plurality of input fiber segments, each comprising a multimode optical fiber core, are operatively coupled at one end to a respective laser source to receive a respective modulated optical beam. A multimode optical beam combiner is used to operatively couple the output ends of the input fiber segments to the input end of an output fiber segment having a multimode optical fiber core. The modulated optical beams produced by the laser beam sources are combined into a single mode-scrambled optical signal. The apparatus enables multiple optical beams having similar wavelengths to be combined to increase optical signal strength. It also enables multiple optical beams having different wavelengths to be combined to form a wavelength division multiplexed signal.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: March 15, 2005
    Assignee: Terabeam Corporation
    Inventors: Thomas J. Wiltsey, David L. Rollins, Robert M. Pierce
  • Patent number: 6827193
    Abstract: A friction torque device includes an adjustment mechanism for adjusting the device in response to wear on a friction surface within the device, and an adjustment limiting member for controlling adjustment thereof. In one embodiment, the adjustment mechanism includes a first cam ring rotatable relative to both a pressure plate and a cover, and a second cam ring engaging the first cam ring on a side of the first cam ring opposite the cover and rotatably fixed relative to the cover. The first cam ring is rotatable with respect to the second cam ring such that ramped surfaces cam against each other to increase the axial displacement of the first and second cam rings, whereby the axial displacement compensates for wear on the friction surface. The adjustment limiting device is selectively engagable with the first cam ring to inhibit rotation thereof.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: December 7, 2004
    Assignee: Eaton Corporation
    Inventors: John D. Conrad, Roger E. Knueve, Martin E. Kummer, Glen A. Pepple, David L. Rollins, Daniel V. Gochenour
  • Publication number: 20040159522
    Abstract: A friction torque device includes an adjustment mechanism for adjusting the device in response to wear on a friction surface within the device, and an adjustment limiting member for controlling adjustment thereof. In one embodiment, the adjustment mechanism includes a first cam ring rotatable relative to both a pressure plate and a cover, and a second cam ring engaging the first cam ring on a side of the first cam ring opposite the cover and rotatably fixed relative to the cover. The first cam ring is rotatable with respect to the second cam ring such that ramped surfaces cam against each other to increase the axial displacement of the first and second cam rings, whereby the axial displacement compensates for wear on the friction surface. The adjustment limiting device is selectively engagable with the first cam ring to inhibit rotation thereof.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 19, 2004
    Inventors: John D. Conrad, Roger E. Knueve, Martin E. Kummer, Glen A. Pepple, David L. Rollins, Daniel V. Gochenour
  • Patent number: 6697576
    Abstract: An analog optical link (10) that provides high-fidelity over bandwidths greater than 1 GHz is presented. The analog optical link (10) includes a transmitter (18) having an optical modulator (20) and a receiver (16) having an optical demodulator (12). In one embodiment, the modulator (20) is a phase modulator (20) and particularly a pre-emphasis phase modulator (20) that operates as a frequency modulator at low frequencies. The demodulator (12) is a frequency demodulator (12) that includes a feed-forward function for cancelling noise.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: February 24, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: David L. Rollins, Bruce A. Ferguson
  • Publication number: 20040013437
    Abstract: An apparatus and method for combining multiple optical beams into mode-scrambled optical signals. In one embodiment, the apparatus includes a plurality of laser beam sources, each to produce a modulated optical beam. A plurality of input fiber segments, each comprising a multimode optical fiber core, are operatively coupled at one end to a respective laser source to receive a respective modulated optical beam. A multimode optical beam combiner is used to operatively couple the output ends of the input fiber segments to the input end of an output fiber segment having a multimode optical fiber core. The modulated optical beams produced by the laser beam sources are combined into a single mode-scrambled optical signal. The apparatus enables multiple optical beams having similar wavelengths to be combined to increase optical signal strength. It also enables multiple optical beams having different wavelengths to be combined to form a wavelength division multiplexed signal.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 22, 2004
    Inventors: Thomas J. Wiltsey, David L. Rollins, Robert M. Pierce
  • Patent number: 6587256
    Abstract: An RF combiner (10) that combines a plurality of RF signals (12) in the optical domain. The combiner (10) includes a single optical source (14) that generates an optical beam (16). The optical beam (16) is directed through a series of optical modulators (20), such as optical phase modulators. Each modulator (20) is responsive to an RF signal (12) that is to be combined with the other RF signals (12). Each modulator (20) modulates the optical signal (16) with the RF signal (12) so that the modulations combine in an additive manner. A single optical phase demodulator (32) is used to demodulate the composite phase modulated optical beam (16) to generate the combined RF signal (34). Suitable delay devices (50) can be used between the optical modulators (20), or the RF signals can be matched so that the RF signals combine in phase.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: July 1, 2003
    Assignee: Northrop Grumman Corporation
    Inventors: James E. Leight, David L. Rollins, Richard A. Fields
  • Patent number: 6529674
    Abstract: An optical device for use with an optical input beam comprising an optical thresholding device positioned along an optical path defined by the propagation direction of the optical input beam. If the combined intensity of the optical input beam and a control beam exceeds a threshold level, the optical beam passes through the thresholding device. Preferably, the optical thresholding device is a saturable absorber. When the device is configured as an optical comparator, the intensity of the optical input beam exceeds the threshold level and the thresholding device saturates and turns transparent so that the control beam passes through the thresholding device as an optical indicator beam. When the device is configured as an optical signal attenuator and the intensity of the optical input signal is negligible compared to that of the control beam, the combined intensity of the beams does not saturate the thresholding device.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: March 4, 2003
    Assignee: TRW Inc.
    Inventors: Richard A. Fields, Bruce A. Ferguson, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Patent number: 6519375
    Abstract: An optical modulator (20) that operates as a phase modulator at high frequency and as a frequency modulator at low frequencies to provide a suitable signal-to-noise ratio over a wide frequency band. The modulator (20) includes an optical waveguide 120 and opposing RF electrodes (122, 124) formed in the waveguide (120). An RF input signal is applied to the electrodes (122, 124) to create an electric field that changes the index of refraction of the waveguide (120) to affect the propagation speed of an optical carrier signal (126), and thus provide the modulation. The electrodes (122, 124) are long velocity-matched electrodes that provide the RF loss versus RF frequency needed to produce the desired V&pgr; versus RF frequency over the entire bandwidth. The lower V&pgr; at lower RF frequencies will emphasize the lower frequencies and improve the low-frequency fidelity of the optical link by boosting the low-frequency signals above the excess link noise generated in the demodulator (12).
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: February 11, 2003
    Assignee: TRW Inc.
    Inventors: David L. Rollins, Bruce A. Ferguson
  • Patent number: 6515784
    Abstract: An optical inverting system employs a first optical structure having an index of refraction that varies with the intensity of an incident beam and a second optical structure having a constant index of refraction, and forming an interface therebetween. An optical pulse stream is combined with a laser beam and the combined beam is applied to the first optical structure, impinging the interface at a predetermined angle of incidence. If the angle of incidence is less than a critical angle, the beam is refracted into the second optical structure. If the angle of incidence is greater than the critical angle, the beam is completely reflected at the interface. Thus the output of the second optical structure is an inversion, and the output of the first optical structure is a level shifted replica, of the optical digital pulse stream.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: February 4, 2003
    Assignee: TRW Inc.
    Inventors: Juan C. Carillo, Jr., Bruce A. Ferguson, Richard A. Fields, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Publication number: 20020186445
    Abstract: An RF combiner (10) that combines a plurality of RF signals (12) in the optical domain. The combiner (10) includes a single optical source (14) that generates an optical beam (16). The optical beam (16) is directed through a series of optical modulators (20), such as optical phase modulators. Each modulator (20) is responsive to an RF signal (12) that is to be combined with the other RF signals (12). Each modulator (20) modulates the optical signal (16) with the RF signal (12) so that the modulations combine in an additive manner. A single optical phase demodulator (32) is used to demodulate the composite phase modulated optical beam (16) to generate the combined RF signal (34). Suitable delay devices (50) can be used between the optical modulators (20), or the RF signals can be matched so that the RF signals combine in phase.
    Type: Application
    Filed: June 6, 2001
    Publication date: December 12, 2002
    Inventors: James E. Leight, David L. Rollins, Richard A. Fields
  • Publication number: 20020167732
    Abstract: An optical inverting system employs a first optical structure having an index of refraction that varies with the intensity of an incident beam and a second optical structure having a constant index of refraction, and forming an interface therebetween. An optical pulse stream is combined with a laser beam and the combined beam is applied to the first optical structure, impinging the interface at a predetermined angle of incidence. If the angle of incidence is less than a critical angle, the beam is refracted into the second optical structure. If the angle of incidence is greater than the critical angle, the beam is completely reflected at the interface. Thus the output of the second optical structure is an inversion, and the output of the first optical structure is a level shifted replica, of the optical digital pulse stream.
    Type: Application
    Filed: April 24, 2001
    Publication date: November 14, 2002
    Inventors: Juan C. Carillo, Bruce A. Ferguson, Richard A. Fields, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Patent number: 6452714
    Abstract: A demodulation system used in connection with an analog optical link. An optical carrier signal modulated with an RF signal is split into two portions. One carrier signal portion is applied to a coarse demodulator that generates a demodulated signal representative of the RF signal and the additive inverse of an error signal. The coarse demodulator output is inverted and applied to a phase modulator along with the second carder signal portion. The phase modulator modulates the optical carrier signal with the additive inverse of the demodulated signal from the coarse demodulator, and the RF signal components of the carrier signal and the demodulated signal cancel, leaving the carrier signal modulated with the error signal. The modulated carrier signal is filtered, then demodulated to regenerate the error signal, which is combined with the demodulated signal from the coarse demodulator to recreate the RF signal with minimal excess noise and distortion.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: September 17, 2002
    Assignee: TRW Inc.
    Inventor: David L. Rollins
  • Publication number: 20020037148
    Abstract: An optical device for use with an optical input beam comprises and optical thresholding device having a predetermined threshold level, and is positioned along an optical path defined by the propagation direction of the optical input beam. A source generates a control beam through the optical thresholding device, wherein if the combined intensity of the optical input beam and the control beam is large enough to exceed the threshold level of the thresholding device, the optical beam passes through he thresholding device. The thresholding device attenuates the optical beam as it passes therethrough. In a preferred embodiment, the optical thresholding device is a saturable absorber.
    Type: Application
    Filed: November 30, 2001
    Publication date: March 28, 2002
    Applicant: TRW Inc.
    Inventors: Richard A. Fields, Bruce A. Ferguson, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Publication number: 20020034371
    Abstract: An optical device for use with an optical input beam comprises and optical thresholding device having a predetermined threshold level, and is positioned along an optical path defined by the propagation direction of the optical input beam. A source generates a control beam through the optical thresholding device, wherein if the combined intensity of the optical input beam and the control beam is large enough to exceed the threshold level of the thresholding device, the optical beam passes through he thresholding device. The thresholding device attenuates the optical beam as it passes therethrough. In a preferred embodiment, the optical thresholding device is a saturable absorber.
    Type: Application
    Filed: November 29, 2001
    Publication date: March 21, 2002
    Applicant: TRW Inc.
    Inventors: Richard A. Fields, Bruce A. Ferguson, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Dembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Patent number: 6327399
    Abstract: An optical device for use with an optical input beam comprises and optical thresholding device having a predetermined threshold level, and is positioned along an optical path defined by the propagation direction of the optical input beam. A source generates a control beam through the optical thresholding device, wherein if the combined intensity of the optical input beam and the control beam is large enough to exceed the threshold level of the thresholding device, the optical beam passes through he thresholding device. The thresholding device attenuates the optical beam as it passes therethrough. In a preferred embodiment, the optical thresholding device is a saturable absorber.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: December 4, 2001
    Assignee: TRW Inc.
    Inventors: Richard A. Fields, Bruce A. Ferguson, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Patent number: 6292119
    Abstract: An optical analog-to-digital converter (10) that makes use of a downward-folding successive approximation conversion scheme that employs subtraction of optical signals. A pulsed optical signal (20) to be converted is applied as an input to each of a plurality of converter channels (12, 14, 16, 18), where each channel (12, 14, 16, 18) outputs one of the bits of the digital output of the converter (10). The input signal (20) to each channel (12, 14, 16, 18) is sent to a thresholding device (24, 40, 60, 80) that determines whether the intensity of the signal is greater than or less than a predetermined threshold value. The first channel thresholding device (24) compares the input signal (20) to a threshold value that is one-half of a known maximum intensity. Subsequent channel thresholding devices (40, 60, 80) compare the input signal to a threshold value that is one-half of the intensity used in the previous channel in a downward-folding scheme.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: September 18, 2001
    Assignee: TRW Inc.
    Inventors: Juan C. Carillo, Jr., Bruce A. Ferguson, Richard A. Fields, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton
  • Patent number: 6201632
    Abstract: A demodulation system used in connection with an analog optical link that provides a wide dynamic range and SNR potential for large RF signal bandwidths. An optical carrier signal modulated with an RF signal is applied to an optical splitter in the demodulation system that splits the signal into first and second carrier signals. One of the carrier signals is applied to a coarse demodulator that provides either PM or FM demodulation to generate a demodulated signal representative of the signal that includes the RF signal and the additive inverse of an error signal. The output from the coarse demodulator is inverted, and integrated in the FM case, and then applied to a phase modulator along with the second optical carrier signal from the optical splitter.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: March 13, 2001
    Assignee: TRW Inc.
    Inventor: David L. Rollins
  • Patent number: 6160504
    Abstract: An optical quantizer (10) that employs a chain of optical thresholding devices (16) positioned in the propagation path of an optical input beam (12) to be quantized. Each optical thresholding device (16) saturates and turns transparent if the intensity of the optical beam (12) that impinges it is above a predetermined threshold level designed into the device (16). If the input beam (12) saturates the optical thresholding device (16), the device (16) outputs an indicator signal (22) identifying the saturation. The input beam (12) propagates through the optical thresholding device (16) with some attenuation caused by the saturation, and impinges subsequent optical thresholding devices (16) in the chain. Eventually, the attenuation of the input beam (12) caused by the multiple saturations will decrease the beam intensity below the threshold level of the next optical thresholding device (16). The number of indicator signals (22) gives an indication of the intensity of the input beam (12).
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: December 12, 2000
    Assignee: TRW Inc.
    Inventors: Richard A. Fields, Juan C. Carillo, Jr., Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton, Bruce A. Ferguson
  • Patent number: 6160930
    Abstract: The optical hold unit (100) of the present invention includes an optical modulator (108) that has an electrical input, an optical input, and an optical output. A 1.times.N optical splitter (106) is also provided that has an optical input and N optical outputs. In addition, N optical paths (112) are individually coupled to the N optical outputs and carry one of the N output signals. Each optical path has an associated propagation delay. Optical delay elements may be located in any of the N optical paths that carry the output signals. The optical delay elements serve to lengthen the propagation delay (114a-e) of the optical path (112a-e) in which the optical delay element is located. In an alternative embodiment, the optical hold unit (200) includes an optical modulator (108) that has an electrical input, an optical input, and an optical output. An optical resonator (202) is also provided and connected to the optical output of the modulator (108).
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: December 12, 2000
    Assignee: TRW Inc.
    Inventors: Bruce A. Ferguson, Richard A. Fields, Mark Kintis, Elizabeth T. Kunkee, Lawrence J. Lembo, Stephen R. Perkins, David L. Rollins, Eric L. Upton