Patents by Inventor David L. Thompson

David L. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6622050
    Abstract: The present invention provides for an encryption apparatus, system, and method in which data from an Implantable Medical Device (IMD) and a data center could be transferred based on a differentiated encryption system. The encryption scheme allows for the differentiation, segregation, and classification of data at required or needed levels of security. Before transfer of the data, either from an IMD or any other part of a support network for the IMDs, the encryption device begins to distinguish the data. The variable data is then classified based on various levels of security having distinct encryption protocols. After classification the data is encrypted based on the data's level of security. The data is then transmitted. Upon being received the data is then segregated based on whether the data is encrypted. The encrypted data is then de-encrypted and interpreted.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: September 16, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6580947
    Abstract: An implantable medical device (IMD) uses a solid-state sensor for detecting the application of an external magnetic field, the sensor comprises one or more magnetic field responsive microelectromechanical (MEM) switch fabricated in an IC coupled to a switch signal processing circuit of the IC that periodically determines the state of each MEM. The MEM switch comprises a moveable contact suspended over a fixed contact by a suspension member such that the MEM switch contacts are either normally open or normally closed. A ferromagnetic layer is formed on the suspension member, and the suspended contact is attracted or repelled toward or away from the fixed contact. The ferromagnetic layer, the characteristics of the suspension member, and the spacing of the switch contacts may be tailored to make the switch contacts close (or open) in response to a threshold magnetic field strength and/or polarity.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: June 17, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6577901
    Abstract: A network compatible RF Wireless Link for Medical Device Data Management includes apparatus for establishing a communication link between an IMD, a patient-worn device, and a remote monitoring station while at the same time minimizing device current drain. The minimal current drain is achieved by scheduling periodic interrogation of the data collected by the IMDs for subsequent transmission to a remote location. Generally, the communication system is implemented to transmit data preferably telemetered from the IMD to a patient-worn device. The data from the patient-worn device is transmitted to a transceiver that sends the data to a remote information network. The patient-worn device may be equipped with a Bluetooth (BT) or Home RF communication system. The transceiver is preferably similarly equipped with BT or Home RF technology having a plurality of nodes.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 10, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6571125
    Abstract: An Implantable Medical Device (IMD) for controllably releasing a biologically-active agent such as a drug to a body is disclosed. The IMD includes a catheter having one or more ports, each of which is individually controlled by a respective pair of conductive members located in proximity to the port. According to the invention, a voltage potential difference generated across a respective pair of conductive members is used to control drug delivery via the respective port. In one embodiment of the current invention, each port includes a cap member formed of a conductive material. This cap member is electrically coupled to one of the conductive members associated with the port to form an anode. The second one of the conductive members is located in proximity to the port and serves as a cathode.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 27, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6567703
    Abstract: Implantable medical devices (IMDS) having RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming commands to and from an external programmer having an improved RF module configured to occupy small spaces within the IMD housing to further effect the miniaturization thereof. An RF module formed of an RF module substrate and at least one IC chip and discrete components has a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include: (1) integrating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: May 20, 2003
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Gregory J. Haubrich
  • Publication number: 20030092995
    Abstract: A device and method for deploying a lead in tortuous pathways such as the left ventricle or the coronary sinus vasculature. A catheter having fiber optics is inserted into the vasculature of a patient with the aid of a guide wire or equivalent. The fiber optics transmits infrared light to an optical head at the distal end of the catheter. Light reflecting from the vasculature system is collected and transmitted through the optical fibers to an infrared camera for imaging. Alternatively, an active pixel sensor is positioned distally on the lead for collecting and transmitting the image to a display device located external to the patient. Proper selection of the wavelength of infrared illumination allows objects to be imaged through bodily opaque fluid. Another embodiment enables viewing of a cardiac lead for extraction by a laser. Yet another embodiment enables proper positioning of an ablation catheter before energization.
    Type: Application
    Filed: February 28, 2002
    Publication date: May 15, 2003
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6562000
    Abstract: A medical device known as a therapeutic substance delivery device is configured to with an infusion rate control to deliver a therapeutic substance such as pharmaceutical compositions, genetic materials, and biologics to treat a variety of medical conditions such as pain, spastisity, cancer, and other diseases in humans and other animals. The therapeutic substance delivery device can be configured as a single-use device that is versatile, small, inexpensive, and has many other improvements. The single-use device has a Micro Electro Mechanical System (MEMS) flow restriction with a variable infusion rate. The MEMS flow restriction is fluidly coupled to a reservoir outlet to receive therapeutic substance dispensed from the single-use reservoir at the reservoir rate and restrict the therapeutic substance flow to a desired infusion rate. The single-use reservoir is configured for controlled collapse to dispense therapeutic substance from the reservoir at a reservoir rate through a reservoir outlet.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: May 13, 2003
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Michael F. Mattes, Lary R. Larson, Kenneth T. Heruth
  • Publication number: 20030083714
    Abstract: The invention discloses a non-tissue contacting electrode system to sense physiologic signals from a patient during implant and/or follow-up of an implantable medical device (IMD) via an external programmer or other monitoring instrument. These sensing systems are electrically connected to the circuitry of the external device and detect cardiac depolarization waveforms displayable as electrocardiographic tracings on the instrument screen when the programming head is positioned above an implanted pacemaker (or other implanted device) so equipped with a non-tissue contacting electrode system. The structure and system provide an enhanced capability for detecting and gathering physiological signals from a patient with minimally invasive patient contact.
    Type: Application
    Filed: October 31, 2001
    Publication date: May 1, 2003
    Inventors: David L. Thompson, Suzanne L. Wilson
  • Publication number: 20030083559
    Abstract: A peripheral monitor patch apparatus for attachment to a patient includes a high capacity memory for the storing and later retrieving of the sensed and compressed physiologic data sensed by unique electrodes. A resilient substrate provides support for a memory, microprocessor, receiver, and other electronic components. The substrate flexes in a complimentary manner in response to a patient's body movements. The substrate is affixed to the patient's skin or clothes with the use of an adhesive, which provides for comfort and wearability. The low profile peripheral patch apparatus is preferably similar in size and shape to a standard bandage, and may be attached to the patient in an inconspicuous location. A status indicator provides for a visual, verbal, or tactile indication of the operational status of the peripheral monitor patch.
    Type: Application
    Filed: October 31, 2001
    Publication date: May 1, 2003
    Inventor: David L. Thompson
  • Patent number: 6548826
    Abstract: In one embodiment, a testing regimen is implemented to reduce test time. Specifically, a structure and method to power up and stabilize all die on the wafer prior to testing each die is implemented. More specifically, parallel powering schemes including die stabilization procedures are used to ready the wafer for testing. A wafer probe tester is indexed from one die to the next for an uninterrupted testing of all die in the wafer subsequent to all die power up and stabilization.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: April 15, 2003
    Inventors: Andreas A. Fenner, David L. Thompson
  • Publication number: 20030069609
    Abstract: A method and apparatus for cardioverting the atrium of a human heart that includes insertion of first and second elongated electrodes tranvenously into the heart and associated vessels. One electrode is preferably located in the coronary sinus and great vein of the heart. The other electrode is preferably located in the vicinity of the right atrium of the heart, spaced from the electrode located in the coronary sinus. In response to detection of fibrillation or in response to manual triggering, a defibrillation pulse is applied between the first and second electrodes to effect atrial cardioversion. Further, after delivery of a successful defibrillation shock, the width of intrinsic p-waves are monitored and bi-atrial pacing is temporarily initiated if the width exceeds a preset or programmable threshold.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20030061123
    Abstract: A medical device production and supply information management system synchronous with manufacturing, planning and scheduling, product consumption forecast, and component purchase to enable just-in-time inventory control at the manufacturing facility, vendor stocks, material/product tracking, distribution and shipping management to thereby reduce inventory at all points in the product manufacturing, distribution/delivery chain. The system is implemented using a preferably Web enabled information network and data communications with a programmer. The programmer provides access to product information, specification and related data for implanted medical devices from which build-to-order and build-to-replenish commands are issued to the manufacturing center. The system is interactive within the consumption management system that is integrally and seamlessly connected with patients, hospitals, sales offices and related information hubs including manufacturing facilities.
    Type: Application
    Filed: February 1, 2001
    Publication date: March 27, 2003
    Inventors: James L. McMenimen, Christopher J. Campbell, Barbara K. Ruble, Willa M. Fabian, Larry G. Clark, David L. Thompson
  • Patent number: 6539253
    Abstract: Implantable medical devices (IMDs) having sense amplifiers for sensing physiologic signals and parameters, RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming and interrogation commands to and from an external programmer or other medical device are disclosed. At least one IC chip and discrete components have a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include forming notch filters of MEMS structures or forming discrete circuit notch filters by one or more of: (1) IC fabricating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: March 25, 2003
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Gregory J. Haubrich, Steven D. Goedeke
  • Patent number: 6535766
    Abstract: A telemetry receiver for an implantable medical device such as a cardiac pacemaker has an RF antenna coupled to a telemetry circuit that includes an out-of-band rejection filter comprising a microelectromechanical filter. The telemetry circuit further includes an amplifier coupled to the microelectromechanical filter and a demodulator coupled to the amplifier. The filter, amplifier and demodulator are all fabricated on a common integrated circuit die. A multichannel telemetry receiver for an implantable medical device has a plurality of microelectromechanical bandpass filters defining individual channels. A multiplexing circuit selects the signal of an individual bandpass filter channel for application to a demodulator circuit that recovers programming data from a modulated RF transmission from a programming unit.
    Type: Grant
    Filed: August 26, 2000
    Date of Patent: March 18, 2003
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Gregory J. Haubrich, Steven D. Goedeke
  • Publication number: 20030028082
    Abstract: A method and structure for notifying clinicians with patients with implantable medical devices (IMDs), about recalls and upgrades, therapy improvements, longevity estimates/improvements, and follow-up frequency recommendations is implemented in an interactive preferably wireless communications system involving a preferably web-enabled remote expert station. Either the clinician or the patient may initiate and access the remote expert station. During such communications, the patient's IMDs are evaluated against a first database comprising patient data and a second database comprising statistical, survivability, probability projections. The patient or the clinician may also access a database containing patient-specific information including other device information. If one or more of the patient's IMDs matches with a recalled or an up-gradable unit such message is posted to the clinician and the patient.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 6, 2003
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20030028226
    Abstract: An implantable medical device communication system includes an implantable medical device, a medical information management system, and a module interface apparatus for facilitating communication therebetween. The implantable medical device includes transmitter/receiver circuitry coupled to a device antenna. The medical information management system includes at least a computer processing unit and a display unit. The module interface apparatus includes interface receiver/transmitter circuitry coupled to an interface antenna to communicate with the device transmitter/receiver circuitry via the device antenna. Further, the module interface apparatus includes interface circuitry operable to adapt data (e.g., programming commands) received from the medical information management system for transmittal to the implantable medical device and adapt data received from the implantable medical device (e.g., device data including operational data, physiological parameter data, analyzed data, diagnostic data, etc.
    Type: Application
    Filed: September 20, 2002
    Publication date: February 6, 2003
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Steven D. Goedeke
  • Publication number: 20030023280
    Abstract: Cardiac pacing systems are disclosed for providing multi-site pacing in a single heart chamber or multi-chamber pacing in two or more heart chambers employing N pacing channels and miniaturized electrical isolation circuitry in up to N−1 pacing channels to minimize the effects of leakage currents generated during delivery of a pacing pulse in any one pacing channel from affecting sense amplifiers in the other pacing channels. Isolation of a the pace/sense electrodes from leakage currents is effected employing monolithic isolation circuit means. An isolated current replicator employing giant magnetoresistive (GMR) sense elements in conjunction with isolated planar cells fabricated in monolithic form is incorporated into conventional VLSI circuitry. Or, the monolithic isolation circuit means is formed of a micro-mechanical fabricated (MEMS) isolation transformer comprising low-loss input and output coils separated by an insulation layer that isolates the input coil from the output coil.
    Type: Application
    Filed: July 30, 2001
    Publication date: January 30, 2003
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6512949
    Abstract: An impedance monitor for discerning edema through evaluation of respiratory rate. Preferred embodiment includes edema monitor and trigger to initiate diagnostic reporting or corrective action when activated. Recording of Long Term Average and Short Term Average values for secondary edema measure based on DC signal level are described as are methods and apparatus for removing unwanted recurring noise.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: January 28, 2003
    Assignee: Medtronic, Inc.
    Inventors: William J. Combs, Catherine R. Condie, Roy Martin, Dwight H. Warkentin, John D. Wahlstrand, David L. Thompson, Li Wang
  • Publication number: 20030018369
    Abstract: An automated identification and configuration system for use with an implantable medical device (IMD) is disclosed. The system includes a first communication circuit that is attached to, or otherwise carried by, a detachable component associated with the IMD such as a medical lead. The communication circuit stores data such as model numbers, serial numbers, technical data, and/or calibration information that describes the additional component. This information may be transferred by the first communications circuit to a second communications circuit that is external to the additional component. This transferred data can be used to automatically configure the internal circuitry and connection functions of the IMD to properly interface with, and support, the additional component. For example, the data can be used to automatically adjust amplifier gains or other sensor circuitry, or to configure a connector block to properly couple to the component.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 23, 2003
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich, Ryan Cobian, Eric Bonde, John L. Sommer, Jonathan Werder, Nels Nerison, Eric V. Blaha
  • Publication number: 20030018364
    Abstract: The present invention provides a practical, multi-polar, in-line connector system for use in connecting implantable medical devices (IMD) and associated non-standard, low profile medical electrical leads. In addition, the present invention provides a system that uses tool less, frictional, sealed, compressive electrical connections for most or all of the electrical interconnections between an IMD and a low profile lead. A protective sleeve seals the lead connector to the non-standard port to prevent intrusion of body fluids therein. In addition, optional microchip-based circuitry coupled to the sleeve enables wireless communication and remote programming for diverse IMDs. Memory associated with the circuitry can store, update and reprogram a wide variety of information relevant to the IMD, the patient, and the attending physician, among others. For example, the microchip may be used to identify the lead type and characteristics, as well as other useful data.
    Type: Application
    Filed: April 30, 2002
    Publication date: January 23, 2003
    Applicant: Medtronic, Inc.
    Inventors: Elisabeth L. Belden, Eric V. Blaha, Eric H. Bonde, Ryan Cobian, Steven D. Goedeke, Gregory J. Haubrich, Douglas N. Hess, Nels D. Nerison, John L. Sommer, David L. Thompson, Jonathan C. Werder