Patents by Inventor David L. Walters

David L. Walters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11299981
    Abstract: An instrument package for use during the drilling a wellbore. The instrument package includes a plurality of instruments such as accelerometers, gyroscopes, and magnetometers; a computer is configured to determine the current position of the plurality of instruments from a set of measurements produced by the plurality of instruments; and wherein the plurality of instruments are mechanically isolated from a drill head assembly by one or more multi-degree of freedom vibration isolators. The computer preferably has at least two modes different analytical modes of analyzing the set of measurements produced by the plurality of instruments, including a continuous mode and a survey mode, the continuous mode being operational during times that active drilling is occurring and the survey mode being operational during times that the active drilling is not occurring.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 12, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Hung Nguyen, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Raviv Perahia, Shuoqin Wang, David W. Shahan, Lian X. Huang, David T. Chang
  • Publication number: 20210373579
    Abstract: A method for controlling a thrust vectored aircraft includes mapping aircraft control commands with a flight controller through at least an inner-mixing space and generating output commands.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 2, 2021
    Inventors: Trent Lukaczyk, David L. Walter, Michael Colonno
  • Patent number: 11066923
    Abstract: A method for generating an output of a downhole inertial measurement unit (IMU) includes: generating a trajectory between a plurality of survey points of a planned well data as a function of time, wherein the planned well data includes a plurality of three-dimensional coordinates corresponding to the survey points of an underground planned well are used to generate a trajectory comprising a plurality of trajectory coordinates between the consecutive ones of the survey points; generating sensor data for each of the trajectory coordinates as a function of time based on the geodetic reference parameters, the generated sensor data comprising: generated accelerometer output; generated gyroscopic output; and generated magnetometer output; and outputting the generated accelerometer output; the generated gyroscopic output; and the generated magnetometer output as a function of time as a generated output of the downhole IMU.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: July 20, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Shuoqin Wang, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Hung Nguyen, Raviv Perahia, David T. Chang
  • Patent number: 10718198
    Abstract: Described is a system for estimating a trajectory of a borehole. The system processes signals of sensor streams obtained from an inertial sensor system. Using the set of processed signals, the system determines whether a drill is in a survey mode state or a continuous mode state, and a measured depth of the borehole is determined. A set of survey mode positioning algorithms is applied when the drill is stationary. A set of continuous mode navigation algorithms is applied when the drill is non-stationary. Using at least one Kalman filter, results of the set of survey mode positioning algorithms and the set of continuous mode navigation algorithms are combined. An estimate of a borehole trajectory and corresponding ellipse of uncertainty (EOU) is generated using the combined results.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: July 21, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Shuoqin Wang, David L. Walter, Adour V. Kabakian, Keerti S. Kona, Hung Nguyen, Raviv Perahia, David Chang
  • Publication number: 20190169979
    Abstract: An instrument package for use during the drilling a wellbore. The instrument package includes a plurality of instruments such as accelerometers, gyroscopes, and magnetometers; a computer is configured to determine the current position of the plurality of instruments from a set of measurements produced by the plurality of instruments; and wherein the plurality of instruments are mechanically isolated from a drill head assembly by one or more multi-degree of freedom vibration isolators. The computer preferably has at least two modes different analytical modes of analyzing the set of measurements produced by the plurality of instruments, including a continuous mode and a survey mode, the continuous mode being operational during times that active drilling is occurring and the survey mode being operational during times that the active drilling is not occurring.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 6, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Hung NGUYEN, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Raviv Perahia, Shuoqin Wang, David W. Shahan, Lian X. Huang, David T. Chang
  • Publication number: 20180371894
    Abstract: A method for generating an output of a downhole inertial measurement unit (IMU) includes: generating a trajectory between a plurality of survey points of a planned well data as a function of time, wherein the planned well data includes a plurality of three-dimensional coordinates corresponding to the survey points of an underground planned well are used to generate a trajectory comprising a plurality of trajectory coordinates between the consecutive ones of the survey points; generating sensor data for each of the trajectory coordinates as a function of time based on the geodetic reference parameters, the generated sensor data comprising: generated accelerometer output; generated gyroscopic output; and generated magnetometer output; and outputting the generated accelerometer output; the generated gyroscopic output; and the generated magnetometer output as a function of time as a generated output of the downhole IMU.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Inventors: Shuoqin Wang, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Hung Nguyen, Raviv Perahia, David T. Chang
  • Publication number: 20180080310
    Abstract: Described is a system for estimating a trajectory of a borehole. The system processes signals of sensor streams obtained from an inertial sensor system. Using the set of processed signals, the system determines whether a drill is in a survey mode state or a continuous mode state, and a measured depth of the borehole is determined. A set of survey mode positioning algorithms is applied when the drill is stationary. A set of continuous mode navigation algorithms is applied when the drill is non-stationary. Using at least one Kalman filter, results of the set of survey mode positioning algorithms and the set of continuous mode navigation algorithms are combined. An estimate of a borehole trajectory and corresponding ellipse of uncertainty (EOU) is generated using the combined results.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Logan D. Sorenson, Shuoqin Wang, David L. Walter, Adour V. Kabakian, Keerti S. Kona, Hung Nguyen, Raviv Perahia, David Chang
  • Patent number: 7929974
    Abstract: A method and system are provided for managing a radio access network (RAN). The RAN defines one or more wireless coverage areas (WCAs) to serve one or more mobile nodes (MNs). Each MN requests data from the RAN at a requested forward-link data rate and the RAN transmits data to the MN at an actual forward-link data rate. For each WCA, an average of the actual forward-link data rates, an average of the requested forward-link data rates, and an RF-link utilization is determined. The RF-link utilization of the WCA is determined by dividing the average actual forward-link data rate of the WCA by the average requested forward-link data rate of the WCA. The RAN is managed by scheduling the addition of one or more carrier frequencies to one or more WCAs, where the scheduling is based on the RF-link utilization of the WCAs.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: April 19, 2011
    Assignee: Sprint Spectrum L.P.
    Inventor: David L. Walters
  • Patent number: 7467324
    Abstract: A system and method for continuing to provide processing in a processing system is disclosed. In one embodiment, a processing system is provided comprising a secondary storage device, a memory, a processor, an operating system, and a plurality of processes stored in the secondary data storage device. The plurality of processes comprise a first group of processes and a second group of processes. The first group of processes is adapted to be swapped between the secondary data storage device and the memory for execution. The second group of processes is adapted to be locked into the memory of the processing system during operation. The request to lock and unlock a process is affected by a watchdog process unrelated to the process being locked. Configuration information for the watchdog process identifies the processes in the first and/or second groups.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: December 16, 2008
    Assignee: Ayaya Inc.
    Inventors: Bhavesh P. Davda, John F. Kelly, David L. Walters
  • Patent number: 6514316
    Abstract: Capillary column oxidation in gas chromatography systems, particularly of polyimide clad columns, is a major cause of column failure and it limits the maximum temperature at which columns can be used. A gas chromatography column oven system is described which utilizes inert gas to substantially eliminate column oxidation thereby increasing column thermal stability. These column oven systems thus increase column lifetime and maximum operating temperature. The column oven systems comprise pneumatically sealed oven enclosures with sealed access ports, sealed sample line ports, and inlet and outlet gas ports to which are connected an inert gas supply and an exhaust gas control system respectively.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: February 4, 2003
    Assignee: MT Systems, LLC
    Inventors: Gregory Scott Gaisford, David L. Walters
  • Patent number: 6316759
    Abstract: A microwave heating apparatus is used for heating a chromatographic column assembly containing a microwave absorbing material. The microwave heating apparatus includes an antenna transmitting a microwave signal and a resonant cavity containing the chromatographic column assembly. The chromatographic column assembly extends relative to predetermined electromagnetic field strength contours within the resonant cavity to provide a predetermined heating profile along the length of the chromatographic column assembly. For example, a single-mode chromatographic column microwave oven can be used to heat a coiled chromatography column to a desired temperature gradient along its length. Oven design embodiments utilizing coaxial transmission line structures, coaxial resonators, and cylindrical resonators are described. Oven designs are provided to achieve more suitable oven size for fixed operating frequencies. Apparatuses for impedance matching an oven to a microwave source are described.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: November 13, 2001
    Assignee: MT Systems, LLC
    Inventors: Gregory Scott Gaisford, David L. Walters
  • Publication number: 20010000403
    Abstract: A microwave heating apparatus is used for heating a chromatographic column assembly containing a microwave absorbing material. The microwave heating apparatus includes an antenna transmitting a microwave signal and a resonant cavity containing the chromatographic column assembly. The chromatographic column assembly extends relative to predetermined electromagnetic field strength contours within the resonant cavity to provide a predetermined heating profile along the length of the chromatographic column assembly. For example, a single-mode chromatographic column microwave oven can be used to heat a coiled chromatography column to a desired temperature gradient along its length. Oven design embodiments utilizing coaxial transmission line structures, coaxial resonators, and cylindrical resonators are described. Oven designs are provided to achieve more suitable oven size for fixed operating frequencies. Apparatuses for impedance matching an oven to a microwave source are described.
    Type: Application
    Filed: December 1, 2000
    Publication date: April 26, 2001
    Inventors: Gregory Scott Gaisford, David L. Walters
  • Patent number: 6157015
    Abstract: A microwave heating apparatus is used for heating a chromatographic column assembly containing a microwave absorbing material. The microwave heating apparatus includes an antenna transmitting a microwave signal and a resonant cavity containing the chromatographic column assembly and the antenna. The chromatographic column assembly extends relative to predetermined electromagnetic field strength contours within the resonant cavity to provide a predetermined heating profile along the length of the chromatographic column assembly. For example, a single-mode chromatographic column microwave oven can be used to heat a coiled chromatography column to a desired temperature gradient along its length. Oven design embodiments utilizing coaxial transmission line structures, coaxial resonators, and cylindrical resonators are described. To control the electromagnetic field gradient in the axial direction, the oven designs provide for varying some part of the oven geometry in the axial direction.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: December 5, 2000
    Assignee: MT Systems, LLC
    Inventors: Scott Gaisford, David L. Walters
  • Patent number: 6093921
    Abstract: A microwave heating apparatus is used for heating a chromatographic column assembly containing a microwave absorbing material. The microwave heating apparatus includes an antenna transmitting a microwave signal and a resonant cavity containing the chromatographic column assembly and the antenna. The chromatographic column assembly extends relative to predetermined electromagnetic field strength contours within the resonant cavity to provide a predetermined heating profile along the length of the chromatographic column assembly. For example, a single-mode chromatographic column microwave oven can be used to heat a coiled chromatography column to a desired temperature gradient along its length. Oven design embodiments utilizing coaxial transmission line structures, coaxial resonators, and cylindrical resonators are described. To control the electromagnetic field gradient in the axial direction, the oven designs provide for varying some part of the oven geometry in the axial direction.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: July 25, 2000
    Assignee: MT Systems, LLC
    Inventors: Scott Gaisford, David L. Walters
  • Patent number: 6029498
    Abstract: A chromatography column for microwave heating either incorporates microwave absorbing material into the column itself or positions the column adjacent to microwave absorbing material so that the column and the chromatography sample contained therein are heated by the microwave absorbing material via conduction or convection. For example, a microwave absorbing material (e.g., ferrite) can be fused into the inner silica layer or incorporated in an outer polymer layer of the column. Microwave absorbing material can also be incorporated into an external element (e.g., an outer tube, sleeve, or spool) positioned adjacent to the chromatography column. A layer of thermal insulation can be placed around the column to decrease the rate of heat loss. Optionally, a gap can be provided between the chromatography column and thermal insulation to further reduce heat loss during the heating cycle and to accelerate cooling at the end of the heating cycle by making it possible to ventilate the heated column.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: February 29, 2000
    Assignee: MT Systems, LLC
    Inventors: David L. Walters, Scott Gaisford
  • Patent number: 5939614
    Abstract: A chromatography column for microwave heating either incorporates microwave absorbing material into the column itself or positions the column adjacent to microwave absorbing material so that the column and the chromatography sample contained therein are heated by the microwave absorbing material via conduction or convection. For example, a microwave absorbing material (e.g., ferrite) can be fused into the inner silica layer or incorporated in an outer polymer layer of the column. Microwave absorbing material can also be incorporated into an external element (e.g., an outer tube, sleeve, or spool) positioned adjacent to the chromatography column. A layer of thermal insulation can be placed around the column to decrease the rate of heat loss. Optionally, a gap can be provided between the chromatography column and thermal insulation to further reduce heat loss during the heating cycle and to accelerate cooling at the end of the heating cycle by making it possible to ventilate the heated column.
    Type: Grant
    Filed: July 1, 1998
    Date of Patent: August 17, 1999
    Assignee: MT Systems, LLC
    Inventors: David L. Walters, Scott Gaisford
  • Patent number: 5160972
    Abstract: A method of installing a cable, particularly but not exclusively in a duct filled with flowing liquid, wherein, as the cable is deployed, the strain in the cable is determined by sending a signal down the cable and receiving a signal back from the cable. The speed of deployment is adjusted according to the strain detected. Preferably the system is applied to optical cables, and a radio frequency signal is modulated on an optical carrier. Optical connection to the cable on the rotating drum is made via an optical slip-ring. The front end of the cable has a silvered end termination for reflecting the modulated signal back along the fibre to be detected by an optical receiver, and there is a vector voltmeter for determining the phased difference between the signals to thus determine the strain in the cable.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: November 3, 1992
    Assignee: STC PLC
    Inventors: David L. Walters, Martin Healy, Ernest C. Marlow, David F. Harrison
  • Patent number: 5090665
    Abstract: A method of installing a cable, particularly but not exclusively in a duct filled with flowing liquid, wherein, as the cable is deployed, the strain in the cable is determined by sending a signal down the cable and receiving a signal back from the cable. The speed of deployment is adjusted according to the strain detected. Preferably the system is applied to optical cables, and a radio frequency signal is modulated on an optical carrier. optical connection to the cable on the rotating drum is made via an optical slip-ring. The front end of the cable has a silvered end termination for reflecting the modulated signal back along the fibre to be detected by an optical receiver, and there is a vector voltmeter for determining the phased difference between the signals to thus determine the strain in the cable.
    Type: Grant
    Filed: October 5, 1990
    Date of Patent: February 25, 1992
    Assignee: STC PLC
    Inventors: David L. Walters, Martin Healy, Ernest C. Marlow, David F. Harrison