Patents by Inventor David M. Smith

David M. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11050152
    Abstract: A phased array antenna is provided. The phased array antenna includes a dome shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 29, 2021
    Assignee: AVX Corporation
    Inventor: David M. Smith
  • Patent number: 11050166
    Abstract: A phased array antenna is provided. The phased array antenna includes a tube shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 29, 2021
    Assignee: AVX Corporation
    Inventor: David M. Smith
  • Patent number: 11016191
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: May 25, 2021
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Publication number: 20210085292
    Abstract: Sparse arrays of transducer elements may be beneficial in providing ultrasound transducer probes with a wide total aperture while containing a manageable number of transducer elements. Sparse arrays made with bulk piezoelectric materials or with arrays of micro-elements can be effectively with ping-based multiple aperture ultrasound imaging techniques to perform real-time volumetric imaging.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Henry A. DAVIS, Donald F. SPECHT, Josef R. CALL, Sharon L. ADAM, David M. SMITH, Erik GOKBORA
  • Publication number: 20210068787
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: David M. SMITH, Donald F. SPECHT, Linda V. CABRERA, Kenneth D. BREWER, David J. SPECHT
  • Patent number: 10925577
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate physical apertures of ultrasound arrays. The probe can include separate backing plates configured to secure the ultrasound arrays in predetermined positions and orientations relative to one another. Some embodiments of the probe include flex circuit connected to the ultrasound arrays. In additional embodiments, a flex/PC board comprising flex connectors and an array of terminals is connected to the ultrasound arrays. Algorithms can solve for variations in tissue speed of sound, thus allowing the probe apparatus to be used virtually anywhere in or on the body.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 23, 2021
    Assignee: MAUI IMAGING, INC.
    Inventors: Sharon L. Adam, David M. Smith, Donald F. Specht, Kenneth D. Brewer
  • Patent number: 10903811
    Abstract: Disclosed is a filter device comprising at least a shell, a first discoidal capacitor, a second discoidal capacitor, and an inductor. The shell is elongated in a stack direction. The first discoidal capacitor and the second discoidal capacitor are disposed within the shell, where the first discoidal capacitor is stacked above the second discoidal capacitor along the stack direction. The inductor comprises a first patterned conductive line disposed within the shell. The first patterned conductive line is coupled between the first discoidal capacitor and the second discoidal capacitor. The first patterned conductive line is wound in a winding direction traversing the stack direction.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 26, 2021
    Assignee: AVX Corporation
    Inventor: David M. Smith
  • Patent number: 10856846
    Abstract: Sparse arrays of transducer elements may be beneficial in providing ultrasound transducer probes with a wide total aperture while containing a manageable number of transducer elements. Sparse arrays made with bulk piezoelectric materials or with arrays of micro-elements can be effectively with ping-based multiple aperture ultrasound imaging techniques to perform real-time volumetric imaging.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 8, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: Henry A. Davis, Donald F. Specht, Josef R. Call, Sharon L. Adam, David M. Smith, Erik Gokbora
  • Patent number: 10835208
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 17, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Patent number: 10620613
    Abstract: Techniques for controlling the operation of a process plant or several process plants within a process control system using a centralized or distributed controller farm allow for increased flexibility in the process control system. Any of the controllers in the controller farm may be utilized to execute modules corresponding to any of the field devices in one or several process plants. Control modules or other operations may be allocated amongst the controllers distributing the load so that one controller is not performing several operations while others are inactive. Additionally, the controller farm may be located in a temperature controlled room or area in an offsite location from the process plants. In some scenarios, load balancing techniques are performed to distribute the load for the modules equally or at least similarly amongst the controllers.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 14, 2020
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Tiong P. Ong, Kent A. Burr, David R. Denison, Godfrey R. Sherriff, Gary Law, Brandon Hieb, David M. Smith
  • Patent number: 10617384
    Abstract: Systems and methods of M-mode ultrasound imaging allows for M-mode imaging along user-defined paths. In various embodiments, the user-defined path can be a non-linear path or a curved path. In some embodiments, a system for M-mode ultrasound imaging can comprise a multi-aperture probe with at least a first transmitting aperture and a second receiving aperture. The receiving aperture can be separate from the transmitting aperture. In some embodiments, the transmitting aperture can be configured to transmit an unfocused, spherical, ultrasound ping signal into a region of interest. The user-defined path can define a structure of interest within the region of interest.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 14, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: Kenneth D. Brewer, David M. Smith, Rozalin M. Lorenzato, Bruce R. Ritzi
  • Patent number: 10547035
    Abstract: An energy and power supply device includes an energy storage unit configured to store electrical energy, an output coupled to the energy storage unit and configured to provide an output electrical current to a load, and a current limiting system configured to selectively limit the output electrical current according to a current protection profile. The current protection profile includes a plurality of threshold currents and a plurality of corresponding threshold periods of time that facilitate providing the output electrical current according to a maximum variable current versus time function.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 28, 2020
    Assignee: GOAL ZERO LLC
    Inventors: Keyvan Vasefi, Michael Roner, Walker Ford, Sterling Robison, David M. Smith
  • Publication number: 20200003896
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Patent number: 10401493
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 3, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Patent number: 10393281
    Abstract: A pressure relief system is provided and a corresponding method for relieving pressure from a duct routing a gas from a compressor to a load utilizing the same. According to one aspect, a pressure relief assembly, located near the load, and independent of the primary load compressor pressure relief valve, for use with a duct includes a cover, first and second chambers, and a piston. The piston provides a moveable wall between the chambers and is coupled to the cover. As gas from the duct enters the two chambers, the configuration of the chambers provides for a pressure differential that moves the piston and the corresponding cover. This movement transitions the cover from a closed configuration that seals the duct to an open configuration that allows gas within the duct to escape.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: August 27, 2019
    Assignee: The Boeing Company
    Inventors: Marcus Karel Richardson, David M. Smith
  • Publication number: 20190259534
    Abstract: A self-aligning capacitor electrode assembly having an improved breakdown voltage is disclosed. The electrode assembly comprises a first electrode having a generally planar shape and a length in a first direction. The electrode assembly also comprises a second electrode having a generally planar shape and a length in a second direction. The second electrode overlaps the first electrode such that an overlapping region is formed. The overlapping region has an area that is insensitive to a relative misalignment in the first direction between the first electrode and the second electrode that is less than a first offset distance. A ratio of the length of the first electrode to the first offset distance is less than about 45.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 22, 2019
    Inventor: David M. Smith
  • Publication number: 20190252782
    Abstract: A phased array antenna is provided. The phased array antenna includes a dome shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventor: David M. Smith
  • Publication number: 20190252799
    Abstract: A phased array antenna is provided. The phased array antenna includes a tube shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventor: David M. Smith
  • Publication number: 20190200961
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: Donald F. SPECHT, Kenneth D. BREWER, David M. SMITH, Josef R. CALL, Viet Nam LE, Bruce R. RITZI
  • Publication number: 20190175152
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: David M. SMITH, Sharon L. ADAM, Donald F. SPECHT, Kenneth D. BREWER, John P. LUNSFORD, David J. SPECHT