Patents by Inventor David M. Wilt

David M. Wilt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760509
    Abstract: In accordance with various embodiments of the disclosed subject matter, a system and method is configured for scheduling and invoking power sharing among satellites within a constellation of satellites such that energy storage systems at a target satellite may by charged prior to the use of electric propulsion thrust activation or other high electricity demand operations (or such operations contemporaneously augmented) by power beams transmitted from other (source) satellites within the constellation.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 19, 2023
    Assignee: Government of the United States as represented by the Secretary of the Air Force
    Inventors: Paul E. Hausgen, David M. Wilt
  • Publication number: 20210280725
    Abstract: A metal matrix composite paste is provided for screen printing metal matrix composite contacts in a photovoltaic cell. The metal matrix composite paste includes a plurality of functionalized multi-walled carbon nanotubes in a metal paste. Because the metal matrix composite paste can have similar mechanical and chemical properties to a metal paste, it can be incorporated into standard metallization processes. The metal matrix composite contacts formed from the metal matrix composite paste can have increased ductility and self-healing capability to electrically bridge a gap caused by physical fracture of a busbar or gridline.
    Type: Application
    Filed: June 28, 2019
    Publication date: September 9, 2021
    Inventors: Sang M. HAN, Omar Kamal ABUDAYYEH, Andre CHAVEZ, David M. WILT
  • Patent number: 8974899
    Abstract: A flexible hybrid coverglass for spacecraft solar panels comprised of small beads of either fused silica or ceria-doped borosilicate glass embedded in a matrix of conventional coverglass adhesives. These beads may also be used in a matrix of Kapton as the solar panel's substrate which may be combined with flexible solar cells to form flexible solar panels.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 10, 2015
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventor: David M. Wilt
  • Patent number: 8952242
    Abstract: A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 10, 2015
    Assignees: Rochester Institute of Technology, The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Ryne P. Raffaele, David M. Wilt
  • Patent number: 8829336
    Abstract: A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: September 9, 2014
    Assignee: Rochester Institute of Technology
    Inventors: Ryne P. Raffaelle, David M. Wilt
  • Publication number: 20100081228
    Abstract: A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 1, 2010
    Applicants: Rochester Institute of Technology, Glenn Research Center
    Inventors: Ryne P. Raffaele, David M. Wilt
  • Publication number: 20080121271
    Abstract: A photovoltaic device includes three or more solar cells which are layered on top of each other, at least one of quantum dots and quantum dashes, and first and second conductors. The quantum dots or quantum dashes are incorporated in at least one of the solar cells which is between the other solar cells. The first conductor is coupled to one of the solar cells and the second conductor is coupled to another one of the solar cells.
    Type: Application
    Filed: May 3, 2007
    Publication date: May 29, 2008
    Applicants: ROCHESTER INSTITUTE OF TECHNOLOGY, GLENN RESEARCH CENTER
    Inventors: Ryne P. Raffaelle, David M. Wilt
  • Patent number: 6482672
    Abstract: A method for growing InxGa1−xAs epitaxial layer on a lattice mismatched InP substrate calls for depositing by organo-metallic vapor phase epitaxy, or other epitaxial layer growth technique, a plurality of discreet layers of InAsyP1−y over an InP substrate. These layers provide a buffer. Each succeeding buffer layer has a distinct composition which produces less than a critical amount of lattice mismatch relative to the preceding layer. An InxGa1−xAs epitaxial layer is grown over the buffer wherein 0.53≦x≦0.76. A resulting InGaAs structure comprises an InP substrate with at least one InAsP buffer layer sandwiched between the substrate and the InGaAs epitaxial layer. The buffer layer has a critical lattice mismatch of less than 1.3% relative to the substrate. Additional buffer layers will likewise have a lattice mismatch of no more than 1.3% relative to the preceding layer.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: November 19, 2002
    Assignee: Essential Research, Inc.
    Inventors: Richard W. Hoffman, David M. Wilt
  • Patent number: 6162987
    Abstract: An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: December 19, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Christopher S. Murray, David M. Wilt
  • Patent number: 5641381
    Abstract: The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: June 24, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sheila G. Bailey, David M. Wilt, Frank L. DeAngelo