Patents by Inventor David P. Caffey

David P. Caffey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11688997
    Abstract: A laser assembly (1710) for generating an assembly output beam (1712) includes a laser subassembly (1716) including a first laser module (1716A) and a second laser module (1716B), a transform assembly (1744), and a beam combiner (1746). The first laser module (1716A) emits a plurality of spaced apart first laser beams (1720A). The second laser module (1716B) emits a plurality of spaced apart second laser beams (1720B). The transform assembly (1744) is positioned in a path of the laser beams (1720A) (1720B). The transform assembly (1744) directs the laser beams (1720A) (1720B) to spatially overlap at a focal plane of the transform assembly (1744). The beam combiner (1746) is positioned at the focal plane that combines the lasers beams (1720A) (1720B) to provide a combination beam. The laser beams (1720A) (1720B) directed by the transform assembly (1744) impinge on the beam combiner (1746) at different angles.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: June 27, 2023
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey, Francisco Javier Santos, Justin Motander Jones
  • Publication number: 20210351571
    Abstract: A laser assembly (1710) for generating an assembly output beam (1712) includes a laser subassembly (1716) including a first laser module (1716A) and a second laser module (1716B), a transform assembly (1744), and a beam combiner (1746). The first laser module (1716A) emits a plurality of spaced apart first laser beams (1720A). The second laser module (1716B) emits a plurality of spaced apart second laser beams (1720B). The transform assembly (1744) is positioned in a path of the laser beams (1720A) (1720B). The transform assembly (1744) directs the laser beams (1720A) (1720B) to spatially overlap at a focal plane of the transform assembly (1744). The beam combiner (1746) is positioned at the focal plane that combines the lasers beams (1720A) (1720B) to provide a combination beam. The laser beams (1720A) (1720B) directed by the transform assembly (1744) impinge on the beam combiner (1746) at different angles.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey, Francisco Javier Santos, Justin Motander Jones
  • Patent number: 11070032
    Abstract: A laser assembly (1210) for generating an assembly output beam (1212) includes a laser subassembly (1216) that emits a plurality of spaced apart first laser beams (1220A), a plurality of spaced apart second laser beams (1220B), a transform lens assembly (1244), a wavelength selective beam combiner (1246), and a path length adjuster (1299). The transform lens assembly (1244) collimates and directs the laser beams (1220A) (1220B) to spatially overlap at a focal plane of the transform lens assembly (1244). The path length adjuster (1299) is positioned in a path of the first laser beams (1220A), the path length adjuster (1299) being adjustable to adjust of a path length the first laser beams (1220A) relative to the second laser beams (1220B).
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: July 20, 2021
    Assignee: Daylight Solutions, Inc.
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey
  • Publication number: 20200176954
    Abstract: A laser assembly (1210) for generating an assembly output beam (1212) includes a laser subassembly (1216) that emits a plurality of spaced apart first laser beams (1220A), a plurality of spaced apart second laser beams (1220B), a transform lens assembly (1244), a wavelength selective beam combiner (1246), and a path length adjuster (1299). The transform lens assembly (1244) collimates and directs the laser beams (1220A) (1220B) to spatially overlap at a focal plane of the transform lens assembly (1244). The path length adjuster (1299) is positioned in a path of the first laser beams (1220A), the path length adjuster (1299) being adjustable to adjust of a path length the first laser beams (1220A) relative to the second laser beams (1220B).
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey
  • Patent number: 10559943
    Abstract: A laser assembly (10) for generating an assembly output beam (12) includes a laser subassembly (16) that emits a plurality of spaced apart laser beams (20), a beam adjuster (42), a transform lens (44A), a beam combiner (46), and an output coupler (48). The beam adjuster (42) adjusts the spacing between the plurality of laser beams (20). The transform lens (44A) focuses the laser beams (20) at a focal plane (54) and the beam combiner (46) is positioned at the focal plane (54). The beam combiner (46) combines the lasers beams (20) to provide a combination beam (58). Further, the output coupler (48) redirects at least a portion of the combination beam (58) back to the beam combiner (46) as a redirected beam (60), and transmits a portion of the combination beam (58) as the assembly output beam (12).
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: February 11, 2020
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey
  • Publication number: 20190214786
    Abstract: A laser assembly (10) for generating an assembly output beam (12) includes a laser subassembly (16) that emits a plurality of spaced apart laser beams (20), a beam adjuster (42), a transform lens (44A), a beam combiner (46), and an output coupler (48). The beam adjuster (42) adjusts the spacing between the plurality of laser beams (20). The transform lens (44A) focuses the laser beams (20) at a focal plane (54) and the beam combiner (46) is positioned at the focal plane (54). The beam combiner (46) combines the lasers beams (20) to provide a combination beam (58). Further, the output coupler (48) redirects at least a portion of the combination beam (58) back to the beam combiner (46) as a redirected beam (60), and transmits a portion of the combination beam (58) as the assembly output beam (12).
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey
  • Patent number: 10181693
    Abstract: A laser source (340) that generates an output beam (354) that is directed along a beam axis (354A) that is coaxial with a first axis and orthogonal to a second axis comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates the output beam (354) that is directed along the beam axis (354A). The first mounting assembly (360) couples the laser (358) to the first frame (356). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along the first axis and along the second axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 15, 2019
    Assignee: Daylight Solutions, Inc.
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Publication number: 20170373465
    Abstract: A laser source (340) that generates an output beam (354) that is directed along a beam axis (354A) that is coaxial with a first axis and orthogonal to a second axis comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates the output beam (354) that is directed along the beam axis (354A). The first mounting assembly (360) couples the laser (358) to the first frame (356). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along the first axis and along the second axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Application
    Filed: December 14, 2015
    Publication date: December 28, 2017
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Publication number: 20160111853
    Abstract: A laser source (340) that generates an output beam (354) that is directed along a beam axis (354A) that is coaxial with a first axis and orthogonal to a second axis comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates the output beam (354) that is directed along the beam axis (354A). The first mounting assembly (360) couples the laser (358) to the first frame (356). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along the first axis and along the second axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 21, 2016
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Patent number: 9225148
    Abstract: A laser source (340) comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates an output beam (354) that is directed along a beam axis (354A). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along a first axis and along a second axis that is orthogonal to the beam axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 29, 2015
    Assignee: Daylight Solutions, Inc.
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Patent number: 9059562
    Abstract: An assembly (10) for providing an assembly output beam comprises a laser assembly (12), a power source (14), and a system controller (16). The power source (14) is electrically coupled to the laser assembly (12). The system controller (16) directs power from the power source (14) to the laser assembly (12). Additionally, the system controller (16) includes a capacitor assembly (22) that is electrically connected to the laser assembly (12), and a current source (20) that directs power from the power source (14) to the capacitor assembly (22) and the laser assembly (12). The power source (14) and the capacitor assembly (22) cooperate to provide power to the laser assembly (12). Further, the capacitor assembly (22) provides pulses of power and the current source (20) directs the pulses of power to the laser assembly (12). Moreover, the current source (20) charges the capacitor assembly (22) in between the pulses of power.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: June 16, 2015
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Allen Priest, David P. Caffey
  • Publication number: 20150101234
    Abstract: An assembly (10) for providing an assembly output beam comprises a laser assembly (12), a power source (14), and a system controller (16). The power source (14) is electrically coupled to the laser assembly (12). The system controller (16) directs power from the power source (14) to the laser assembly (12). Additionally, the system controller (16) includes a capacitor assembly (22) that is electrically connected to the laser assembly (12), and a current source (20) that directs power from the power source (14) to the capacitor assembly (22) and the laser assembly (12). The power source (14) and the capacitor assembly (22) cooperate to provide power to the laser assembly (12). Further, the capacitor assembly (22) provides pulses of power and the current source (20) directs the pulses of power to the laser assembly (12). Moreover, the current source (20) charges the capacitor assembly (22) in between the pulses of power.
    Type: Application
    Filed: June 22, 2012
    Publication date: April 16, 2015
    Inventors: Allen Priest, David P. Caffey
  • Publication number: 20140314110
    Abstract: A laser source (340) comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates an output beam (354) that is directed along a beam axis (354A). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along a first axis and along a second axis that is orthogonal to the beam axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
    Type: Application
    Filed: September 22, 2011
    Publication date: October 23, 2014
    Inventors: David F. Arnone, David P. Caffey, Michael Pushkarsky, Miles Weida
  • Patent number: 8774244
    Abstract: A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Arnone, Matt Barre, David P. Caffey, Salvatore F. Crivello, Timothy Day, Kyle Thomas
  • Publication number: 20130243018
    Abstract: A laser assembly (10) that generates a beam (20) includes a gain medium (12) having a first facet region (24) that includes a first facet (16), a second facet region (26) that includes a second facet (18), and an intermediate region (28) that separates and connects the facet regions (24) (26). Additionally, the gain medium (12) includes a substrate layer (30) and a core layer (34) that extend between the facets (16) (18). The gain medium (12) is designed so that when current is directed to the gain medium, (i) current flows through the core layer (34) in the intermediate region (28) to generate the beam (20), and (ii) current does not flow through or flows at a reduced rate through the core layer (34) in one or both facet regions (24) (26).
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: DAYLIGHT SOLUTIONS, INC.
    Inventor: David P. Caffey
  • Patent number: 8467430
    Abstract: An external cavity laser assembly (10) that generates a light beam (12) includes a gain medium (14) and a diffraction grating (24). The gain medium (14) has a growth direction (14C), a fast axis (14A), a first facet (34A), and a second facet (34B) that is spaced apart from the first facet (34A). The gain medium (14) emits from both facets (34A) (34B). Further, a beam polarization (30) of the light beam (32) emitting from the second facet (34B) is perpendicular to the growth direction (14C) and the fast axis (14A). The grating (24) includes a plurality of grating ridges (24A) that are oriented parallel to the beam polarization (30). Moreover, each of the grating ridges (24A) can have a substantially rectangular shaped cross-sectional profile.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 18, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: David P. Caffey, Michael Radunsky, Edeline Fotheringham, Michael Pushkarsky
  • Publication number: 20120106160
    Abstract: A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 3, 2012
    Inventors: Michael Pushkarsky, David F. Arnone, Matt Barre, David P. Caffey, Salvatore F. Crivello, Timothy Day, Kyle Thomas
  • Publication number: 20120076160
    Abstract: An external cavity laser assembly (10) that generates a light beam (12) includes a gain medium (14) and a diffraction grating (24). The gain medium (14) has a growth direction (14C), a fast axis (14A), a first facet (34A), and a second facet (34B) that is spaced apart from the first facet (34A). The gain medium (14) emits from both facets (34A) (34B). Further, a beam polarization (30) of the light beam (32) emitting from the second facet (34B) is perpendicular to the growth direction (14C) and the fast axis (14A). The grating (24) includes a plurality of grating ridges (24A) that are oriented parallel to the beam polarization (30). Moreover, each of the grating ridges (24A) can have a substantially rectangular shaped cross-sectional profile.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 29, 2012
    Inventors: David P. Caffey, Michael Radunsky, Edeline Fotheringham, Michael Pushkarsky