Patents by Inventor David P. Vanderwiel

David P. Vanderwiel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6660237
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 &mgr;m, preferably from about 10 &mgr;m to about 300 &mgr;m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: December 9, 2003
    Assignee: Battelle Memory Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20030185750
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a spinel-containing catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 2, 2003
    Inventors: Yong Wang, Anna Lee Y. Tonkovich, David P. Vanderwiel
  • Publication number: 20030185721
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Application
    Filed: March 18, 2003
    Publication date: October 2, 2003
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6607678
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a spinel-containing catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: August 19, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Y. Tonkovich, David P. Vanderwiel
  • Publication number: 20030149120
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Application
    Filed: October 28, 2002
    Publication date: August 7, 2003
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20030131729
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Application
    Filed: November 4, 2002
    Publication date: July 17, 2003
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller
  • Publication number: 20030116016
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Application
    Filed: November 15, 2002
    Publication date: June 26, 2003
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Chad M. Cucksey
  • Patent number: 6558634
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: May 6, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20030031613
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Application
    Filed: October 4, 2002
    Publication date: February 13, 2003
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Publication number: 20030017105
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Application
    Filed: February 13, 2002
    Publication date: January 23, 2003
    Inventors: Yong Wang, Anna Lee Tonkovich, David P. Vanderwiel
  • Patent number: 6508862
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 21, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr.
  • Patent number: 6503298
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr., Chad M. Cucksey
  • Patent number: 6491880
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: December 10, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6488838
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: December 3, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Patent number: 6451864
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 &mgr;m, preferably from about 10 &mgr;m to about 300 &mgr;m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: September 17, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20020099103
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 &mgr;m, preferably from about 10 &mgr;m to about 300 &mgr;m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Application
    Filed: January 3, 2002
    Publication date: July 25, 2002
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20020006970
    Abstract: The present invention includes an improvement to the existing method of steam reforming of hydrocarbon, wherein the improvement comprises: the flowing is at a rate providing a residence time less than about 0.1 sec resulting in obtaining product formation yield or amount that is the same or greater compared to product formation at a longer residence time. Another improvement of the present invention is operation at a steam to carbon ratio that is substantially stoichiometric and maintaining activity of the supported catalyst. The present invention also includes a catalyst structure for steam reforming of a hydrocarbon.
    Type: Application
    Filed: August 14, 2001
    Publication date: January 17, 2002
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich
  • Publication number: 20010032965
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a spinel-containing catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 25, 2001
    Inventors: Young Wang, Anna Lee Y. Tonkovich, David P. Vanderwiel
  • Patent number: 6284217
    Abstract: The present invention includes an improvement to the existing method of steam reforming of hydrocarbon, wherein the improvement comprises: the flowing is at a rate providing a residence time less than about 0.1 sec resulting in obtaining product formation yield or amount that is the same or greater compared to product formation at a longer residence time. Another improvement of the present invention is operation at a steam to carbon ratio that is substantially stoichiometric and maintaining activity of the supported catalyst. The present invention also includes a catalyst structure for steam reforming of a hydrocarbon.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: September 4, 2001
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich