Patents by Inventor Dean C. Draemel

Dean C. Draemel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7594993
    Abstract: This invention relates to the feed injection zone of a FCC. The feed injection zone is non-circular in shape allows for optimal penetration between feed and catalyst in the feed injection zone.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 29, 2009
    Assignee: Exxonmobile Research and Engineering Company
    Inventors: Dean C. Draemel, Todd R. Steffens
  • Patent number: 7053260
    Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises: a) contacting the feedstock in a reaction zone with a catalyst comprising i) a molecular sieve having defined pore openings and ii) a CO oxidation metal, under conditions effective to convert the feedstock into an olefin product stream comprising C2–C3 olefins and to form carbonaceous deposits on the catalyst so as to provide a carbon-containing catalyst; b) contacting at least a portion of the carbon-containing catalyst with a regeneration medium comprising oxygen in a regeneration zone comprising a fluid bed regenerator having a dense fluid phase and a dilute fluid phase under conditions effective to obtain a regenerated catalyst portion, wherein the difference between the temperature of the dilute phase and the temperature of the dense phase is no greater than 100° C.; c) introducing said regenerated catalyst portion into said reaction zone; and d) repeating steps a)–c).
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel
  • Patent number: 6783662
    Abstract: A cavitation enhanced atomizing process comprises forming a flowing solution of the liquid to be atomized and a lower boiling cavitating liquid. This flowing solution is then contacted with a pressure reducing means, at a temperature below the bubble point of the cavitating liquid in the solution, to produce cavitation bubbles. These bubbles comprise cavitation liquid vapor and the bubble nucleation produces a two-phase fluid of the bubbles and liquid solution. The two-phase fluid is passed downstream into and through an atomizing means, such as an orifice, and into a lower pressure atomizing zone, in which the bubbles vaporize to form a spray of liquid droplets. The nucleated bubbles also grow in size as the so-formed two-phase fluid passes downstream to and through the atomizing means.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: August 31, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dean C. Draemel, Nicholas C. Nahas, Teh C. Ho
  • Patent number: 6776607
    Abstract: The invention relates to a process and apparatus for controlling afterburning in the regenerator of a FCC unit. The process and apparatus inject steam into the dilute phase within a regenerator to promote combustion of carbon monoxide before it enters the regenerator cyclones, plenum, or flue gas transfer lines.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: August 17, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Nicholas C. Nahas, Richard E. Walter, Dean C. Draemel, Bruce J. Artuso
  • Publication number: 20040142813
    Abstract: The invention relates to a process and apparatus for controlling afterburning in the regenerator of a FCC unit. The process and apparatus inject steam into the dilute phase within a regenerator to promote combustion of carbon monoxide before it enters the regenerator cyclones, plenum, or flue gas transfer lines.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 22, 2004
    Inventors: Nicholas C. Nahas, Richard E. Walter, Dean C. Draemel, Bruce J. Artuso
  • Publication number: 20030163010
    Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises:
    Type: Application
    Filed: June 13, 2002
    Publication date: August 28, 2003
    Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel
  • Publication number: 20030102251
    Abstract: A cavitation enhanced atomizing process comprises forming a flowing solution of the liquid to be atomized and a lower boiling cavitating liquid. This flowing solution is then contacted with a pressure reducing means, at a temperature below the bubble point of the cavitating liquid in the solution, to produce cavitation bubbles. These bubbles comprise cavitation liquid vapor and the bubble nucleation produces a two-phase fluid of the bubbles and liquid solution. The two-phase fluid is passed downstream into and through an atomizing means, such as an orifice, and into a lower pressure atomizing zone, in which the bubbles vaporize to form a spray of liquid droplets. The nucleated bubbles also grow in size as the so-formed two-phase fluid passes downstream to and through the atomizing means.
    Type: Application
    Filed: October 17, 2002
    Publication date: June 5, 2003
    Inventors: Dean C. Draemel, Nicholas C. Nahas, Teh C. Ho
  • Publication number: 20020159922
    Abstract: A process and apparatus for atomizing a fluid is disclosed. The processes and apparatuses are useful for atomizing a feed oil for a fluid cat cracking (FCC) or other suitable process.
    Type: Application
    Filed: May 24, 2002
    Publication date: October 31, 2002
    Inventors: Jackson I. Ito, Leonard Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan, Sandi Schoenman
  • Patent number: 6454933
    Abstract: A process and apparatus for atomizing a fluid is disclosed. The processes and apparatuses are useful for atomizing a feed oil for a fluid cat cracking (FCC) or other suitable process.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 24, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jackson I. Ito, Leonard Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan, III
  • Publication number: 20020072465
    Abstract: The invention relates to a process and apparatus for controlling afterburning in the regenerator of a FCC unit. The process and apparatus inject steam into the dilute phase within a regenerator to promote combustion of carbon monoxide before it enters the regenerator cyclones, plenum, or flue gas transfer lines.
    Type: Application
    Filed: June 26, 2001
    Publication date: June 13, 2002
    Inventors: Nicholas C. Nahas, Richard E. Walter, Dean C. Draemel, Bruce J. Artuso
  • Publication number: 20020043478
    Abstract: A cavitation enhanced atomizing process comprises forming a flowing solution of the liquid to be atomized and a lower boiling cavitating liquid. This flowing solution is then contacted with a pressure reducing means, at a temperature below the bubble point of the cavitating liquid in the solution, to produce cavitation bubbles. These bubbles comprise cavitation liquid vapor and the bubble nucleation produces a two-phase fluid of the bubbles and liquid solution. The two-phase fluid is passed downstream into and through an atomizing means, such as an orifice, and into a lower pressure atomizing zone, in which the bubbles vaporize to form a spray of liquid droplets. The nucleated bubbles also grow in size as the so-formed two-phase fluid passes downstream to and through the atomizing means.
    Type: Application
    Filed: August 6, 2001
    Publication date: April 18, 2002
    Inventors: Dean C. Draemel, Nicholas C. Nahas, Teh Chung Ho
  • Patent number: 6352639
    Abstract: An atomizing gas, such as steam, and a hot fluid comprising a hot liquid to be atomized, are passed under pressure, through separate fluid conduits in a heat exchange means, in which the hot liquid heats the steam to a superheat temperature, by indirect heat exchange. The superheated steam is then injected into the hot fluid, which comprises a two-phase fluid comprising steam and the hot liquid, subsequent to the superheated steam injection. The two-phase fluid is passed through an atomizing means, such as an orifice, into a lower pressure atomizing zone, which causes the steam to expand and atomize the liquid into a spray of liquid droplets. The two-phase fluid is formed before or as a consequence of the superheated steam injection and is preferably steam-continuous when passed through the atomizing means. This process is useful for atomizing a hot feed oil for a fluid cat cracking (FCC) process.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 5, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Jackson I. Ito, Leonard Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan
  • Publication number: 20010043888
    Abstract: A process and apparatus for atomizing a fluid is disclosed. The processes and apparatuses are useful for atomizing a feed oil for a fluid cat cracking (FCC) or other suitable process.
    Type: Application
    Filed: April 2, 2001
    Publication date: November 22, 2001
    Inventors: Jackson I. Ito, Leoonard Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan, Sandi Schoenman
  • Publication number: 20010042703
    Abstract: A process and apparatus for atomizing a fluid is disclosed. The processes and apparatuses are useful for atomizing a feed oil for a fluid cat cracking (FCC) or other suitable process.
    Type: Application
    Filed: April 2, 2001
    Publication date: November 22, 2001
    Inventors: Jackson I. Ito, Leoonard Schoenman, Sandi Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan
  • Publication number: 20010000600
    Abstract: An atomizing gas, such as steam, and a hot fluid comprising a hot liquid to be atomized, are passed under pressure, through separate fluid conduits in a heat exchange means, in which the hot liquid heats the steam to a superheat temperature, by indirect heat exchange. The superheated steam is then injected into the hot fluid, which comprises a two-phase fluid comprising steam and the hot liquid, subsequent to the superheated steam injection. The two-phase fluid is passed through an atomizing means, such as an orifice, into a lower pressure atomizing zone, which causes the steam to expand and atomize the liquid into a spray of liquid droplets. The two-phase fluid is formed before or as a consequence of the superheated steam injection and is preferably steam-continuous when passed through the atomizing means. This process is useful for atomizing a hot feed oil for a fluid cat cracking (FCC) process.
    Type: Application
    Filed: December 13, 2000
    Publication date: May 3, 2001
    Inventors: Jackson I. Ito, Leonard Schoenman, Dean C. Draemel, Teh C. Ho, George A. Swan
  • Patent number: 6171476
    Abstract: A cavitation enhanced atomizing process comprises forming a flowing solution of the liquid to be atomized and a lower boiling cavitating liquid. This flowing solution is then contacted with a pressure reducing means, at a temperature below the bubble point of the cavitating liquid in the solution, to produce cavitation bubbles. These bubbles comprise cavitation liquid vapor and the bubble nucleation produces a two-phase fluid of the bubbles and liquid solution. The two-phase fluid is passed downstream into and through an atomizing means, such as an orifice, and into a lower pressure atomizing zone, in which the bubbles vaporize to form a spray of liquid droplets. The nucleated bubbles also grow in size as the so-formed two-phase fluid passes downstream to and through the atomizing means.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: January 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Dean C. Draemel, Nicholas C. Nahas, Teh Chung Ho