Patents by Inventor Deborah J. Calewarts

Deborah J. Calewarts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060222
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: August 31, 2023
    Publication date: February 22, 2024
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11788221
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: October 17, 2023
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11591755
    Abstract: A tissue paper product is provided having at least one ultra-low density ply having a highly porous, open-celled structure and that comprises cellulosic fibers, a water insoluble binder and a foaming surfactant. The cellulosic fiber comprises greater than 50% by weight of the ply and are bonded to one another by hydrogen bonding. Further, the ply has a density less than about 0.04 g/cc and yet still provides low lint and high strength properties with the use of minimal binder. The ultra-low density ply may comprise or be included in sheets forming a stack of dispensable wipers or may be employed as or part of an absorbent core or liquid distribution layer of a personal care absorbent personal care product such as a diaper or feminine pad.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: February 28, 2023
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jian Qin, Deborah J. Calewarts, Donald E. Waldroup
  • Publication number: 20220205154
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20220127792
    Abstract: A method for producing a foam-formed multilayered substrate that includes producing an aqueous-based foam including at least 3% by weight non-straight synthetic binder fibers, wherein the non-straight synthetic binder fibers have an average length greater than 2 mm; forming together a wet sheet layer from the aqueous-based foam and a cellulosic fiber layer, wherein the cellulosic fiber layer includes at least 60 percent by weight cellulosic fibers; and drying the combined layers to obtain the foam-formed multilayer substrate. A multilayered substrate includes a first layer including at least 60 percent by weight non-straight synthetic binder fibers having an average length greater than 2 mm; and a second layer including at least 60 percent by weight cellulosic fiber, wherein the first layer is in a facing relationship with the second layer, and wherein the multilayered substrate has a wet/dry tensile ratio of at least 60%.
    Type: Application
    Filed: January 11, 2022
    Publication date: April 28, 2022
    Inventors: Deborah J. Calewarts, Jian Qin, Charles W. Colman, Cathleen M. Uttecht, Donald E. Waldroup, Francis P. Abuto, Jenny L. Day, Stephen M. Lindsay
  • Patent number: 11313061
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: April 26, 2022
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11255051
    Abstract: A method for producing a foam-formed multilayered substrate that includes producing an aqueous-based foam including at least 3% by weight non-straight synthetic binder fibers, wherein the non-straight synthetic binder fibers have an average length greater than 2 mm; forming together a wet sheet layer from the aqueous-based foam and a cellulosic fiber layer, wherein the cellulosic fiber layer includes at least 60 percent by weight cellulosic fibers; and drying the combined layers to obtain the foam-formed multilayer substrate. A multilayered substrate includes a first layer including at least 60 percent by weight non-straight synthetic binder fibers having an average length greater than 2 mm; and a second layer including at least 60 percent by weight cellulosic fiber, wherein the first layer is in a facing relationship with the second layer, and wherein the multilayered substrate has a wet/dry tensile ratio of at least 60%.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 22, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Deborah J. Calewarts, Jian Qin, Charles W. Colman, Cathleen M. Uttecht, Donald E. Waldroup, Francis P. Abuto, Jenny L. Day, Stephen M. Lindsay
  • Publication number: 20210290450
    Abstract: A high topography nonwoven substrate includes synthetic binder fibers; a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: July 25, 2018
    Publication date: September 23, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20210292948
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: July 25, 2018
    Publication date: September 23, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20200370246
    Abstract: A method for producing a foam-formed multilayered substrate that includes producing an aqueous-based foam including at least 3% by weight non-straight synthetic binder fibers, wherein the non-straight synthetic binder fibers have an average length greater than 2 mm; forming together a wet sheet layer from the aqueous-based foam and a cellulosic fiber layer, wherein the cellulosic fiber layer includes at least 60 percent by weight cellulosic fibers; and drying the combined layers to obtain the foam-formed multilayer substrate. A multilayered substrate includes a first layer including at least 60 percent by weight non-straight synthetic binder fibers having an average length greater than 2 mm; and a second layer including at least 60 percent by weight cellulosic fiber, wherein the first layer is in a facing relationship with the second layer, and wherein the multilayered substrate has a wet/dry tensile ratio of at least 60%.
    Type: Application
    Filed: November 29, 2017
    Publication date: November 26, 2020
    Inventors: Deborah J. Calewarts, Jian Qin, Charles W. Colman, Cathleen M. Uttecht, Donald E. Waldroup, Francis P. Abuto, Jenny L. Day, Stephen M. Lindsay
  • Publication number: 20200190739
    Abstract: A method for producing a high-bulk, foam-formed substrate includes producing an aqueous-based foam including at least 1% by weight crimped synthetic fibers and at least 1% by weight binder fibers; forming a wet sheet from the aqueous-based foam; and drying the wet sheet to obtain the foam-formed substrate. A substrate includes an aqueous-based polymer foam including at least 1% by weight crimped synthetic fiber and at least 1% by weight binder fiber, wherein the substrate is free of superabsorbent material. A method for producing a high-bulk, foam-formed substrate includes producing an aqueous-based foam including at least 2% by weight crimped binder fibers; forming a wet sheet from the aqueous-based foam; and drying the wet sheet to obtain the foam-formed substrate, wherein the foam-formed substrate is free of superabsorbent material, and wherein the substrate has a dry density between 0.02 g/cc and 0.1 g/cc.
    Type: Application
    Filed: April 28, 2017
    Publication date: June 18, 2020
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Jian QIN, Deborah J. CALEWARTS, Charles W. COLMAN, Donald E. WALDROUP, Cathleen M. UTTECHT, Peter WALLACE
  • Publication number: 20180325755
    Abstract: An absorbent composite foam is provided having a density below 0.04 g/cc and low wet collapse comprising (i) between about 5 to about 40% by wt. fluid resistant fibers; (ii) between about 30 to about 80% by wt. cellulosic fibers; (iii) between about 5 to about 35% by wt. binder; and (iv) a foaming surfactant. The combination of ultra-low density and wet stability is achieved, despite a high proportion of cellulosic fibers, by having both hydrogen bonding between cellulosic fibers as well as inter-fiber bonds formed by the binder.
    Type: Application
    Filed: November 2, 2016
    Publication date: November 15, 2018
    Inventors: Jian Qin, Deborah J. Calewarts, Donald E. Waldroup
  • Publication number: 20180320318
    Abstract: A tissue paper product is provided having at least one ultra-low density ply having a highly porous, open-celled structure and that comprises cellulosic fibers, a water insoluble binder and a foaming surfactant. The cellulosic fiber comprises greater than 50% by weight of the ply and are bonded to one another by hydrogen bonding. Further, the ply has a density less than about 0.04 g/cc and yet still provides low lint and high strength properties with the use of minimal binder. The ultra-low density ply may comprise or be included in sheets forming a stack of dispensable wipers or may be employed as or part of an absorbent core or liquid distribution layer of a personal care absorbent personal care product such as a diaper or feminine pad.
    Type: Application
    Filed: November 1, 2016
    Publication date: November 8, 2018
    Inventors: Jian QIN, Deborah J. CALEWARTS, Donald E. WALD
  • Patent number: 9580869
    Abstract: A process is disclosed for topically applying additive compositions to planar substrates, such as tissue webs. In one embodiment, the process is designed to apply relatively high viscous compositions to base sheets at high speeds in a manner that prevents the additive composition from penetrating into the sheet. The additive composition having the relatively high viscosity can be applied to the base sheet in one embodiment using an offset gravure printing process. The applicator roll includes a pattern of raised elements. The raised elements define a surface having at least one dimension that is less than 500 microns. The raised elements are also spaced closely together in order to prevent fiber buildup on the roll during relatively fast processing speeds.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: February 28, 2017
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Keyur Desai, Deborah J. Calewarts, Jian Qin, Jeffrey F. Jurena, Stephen Michael Campbell, Donald E. Waldroup
  • Publication number: 20150140273
    Abstract: The present invention provides a nonwoven substrate comprising a fibrous web defining a surface; and a layer of a benefit agent wherein said benefit agent is selected from an additive composition, an enhancement component and combinations thereof; wherein said benefit agent is frothed and bonded to the fibrous web surface through a creping process. Additionally, the present invention provides for a method of creping a nonwoven substrate and for a nonwoven substrate having an adhesive film of an aqueous, frothed, benefit agent.
    Type: Application
    Filed: December 18, 2014
    Publication date: May 21, 2015
    Inventors: Jian Qin, Deborah J. Calewarts, Jeffrey F. Jurena, Keyur M. Desai, Donald E. Waldroup
  • Patent number: 8916012
    Abstract: The present invention provides a nonwoven substrate comprising a fibrous web defining a surface; and a layer of a benefit agent wherein said benefit agent is selected from an additive composition, an enhancement component and combinations thereof; wherein said benefit agent is frothed and bonded to the fibrous web surface through a creping process. Additionally, the present invention provides for a method of creping a nonwoven substrate and also provides for a nonwoven substrate comprising an adhesive film of an aqueous, frothed, benefit agent.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jian Qin, Deborah J. Calewarts, Jeffrey F. Jurena, Keyur M. Desai, Donald E. Waldroup
  • Publication number: 20130157537
    Abstract: The present invention provides a soft, bulky, and absorbent hydroentangled nonwoven including regenerated cellulose fibers and staple or wood pulp fibers and a method of making the same that includes the steps of a) placing regenerated cellulose fibers on a forming surface; b) depositing staple or wood pulp fibers on the regenerated cellulose fibers; c) hydroentangling the regenerated cellulose fibers and the staple or wood pulp fibers together to form a hydroentangled composite; d) drying the hydroentangled composite; then, e) creping the hydroentangled composite with a frothed creping solution or dispersion.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: David M. Jackson, Donald E. Waldroup, Keyur M. Desai, Jeffrey F. Jurena, Deborah J. Calewarts, Jian Qin
  • Publication number: 20120289917
    Abstract: The present invention relates to a personal care absorbent article comprising at least two substrates each having an internal and external surface, wherein at least one substrate is a fluid permeable bodyside substrate selected from spunbond, meltblown, coform, airlaid, bonded-carded web, spunlace materials and combinations thereof; at least one substrate is an impermeable backsheet; and an absorbent core disposed in between said substrates; wherein at least the external surface of at least one substrate has applied to it a benefit agent selected from an additive composition wherein said additive composition is a polymer dispersion selected from polyolefin dispersions, polyisoprene dispersions, polybutadiene-styrene block copolymer dispersions, latex dispersions, polyvinyl pyrrolidone-styrene copolymer dispersions, polyvinyl alcohol-ethylene copolymer dispersions, and combinations thereof; an enhancement component selected from microparticles, expandable microspheres, fibers, additional polymer dispersions, s
    Type: Application
    Filed: May 25, 2012
    Publication date: November 15, 2012
    Inventors: Frank P. Abuto, Deborah J. Calewarts, Jenny L. Day, Keyur M. Desai, Jeffrey F. Jurena, Jian Qin, Donald E. Waldroup
  • Publication number: 20120171440
    Abstract: A process is disclosed for topically applying additive compositions to planar substrates, such as tissue webs. In one embodiment, the process is designed to apply relatively high viscous compositions to base sheets at high speeds in a manner that prevents the additive composition from penetrating into the sheet. The additive composition having the relatively high viscosity can be applied to the base sheet in one embodiment using an offset gravure printing process. The applicator roll includes a pattern of raised elements. The raised elements define a surface having at least one dimension that is less than 500 microns. The raised elements are also spaced closely together in order to prevent fiber buildup on the roll during relatively fast processing speeds.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Keyur Desai, Deborah J. Calewarts, Jian Qin, Jeffrey F. Jurena, Stephen Michael Campbell, Donald E. Waldroup
  • Publication number: 20120164200
    Abstract: The present invention provides a nonwoven substrate comprising a fibrous web defining a surface; and a layer of a benefit agent wherein said benefit agent is selected from an additive composition, an enhancement component and combinations thereof; wherein said benefit agent is frothed and bonded to the fibrous web surface through a creping process. Additionally, the present invention provides for a method of creping a nonwoven substrate and also provides for a nonwoven substrate comprising an adhesive film of an aqueous, frothed, benefit agent.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 28, 2012
    Inventors: Jian Qin, Deborah J. Calewarts, Jeffrey F. Jurena, Keyur M. Desai, Donald E. Waldroup