Patents by Inventor Deidre A. Strand

Deidre A. Strand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11005124
    Abstract: A solid-state electrolyte includes a lithium salt, a lithium ion-conducting inorganic material, a polymer, and a coupling agent. The coupling agent bonds the lithium ion-conducting inorganic material to the polymer.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 11, 2021
    Assignee: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Cory O'Neill, Bin Li, Alex Freigang, Deidre Strand
  • Patent number: 10978738
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 13, 2021
    Assignees: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Publication number: 20200321653
    Abstract: A solid-state electrolyte includes a lithium salt, a lithium ion-conducting inorganic material, a polymer, and a coupling agent. The coupling agent bonds the lithium ion-conducting inorganic material to the polymer.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 8, 2020
    Inventors: Cory O'Neill, Bin Li, Alex Freigang, Deidre Strand
  • Patent number: 10797349
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a nitrate group.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: October 6, 2020
    Assignee: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Patent number: 10734676
    Abstract: A solid-state electrolyte including a polymer, which can be ion-conducting or non-conducting; an ion-conducting inorganic material; a lithium salt; an additive salt and optionally a coupling agent.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 4, 2020
    Assignee: WILDCAT DISCOVERY TECHNOLOGIES, INC
    Inventors: Cory O'Neill, Bin Li, Alex Freigang, Deidre Strand
  • Patent number: 10707521
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 7, 2020
    Assignees: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Patent number: 10651504
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 12, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Deidre Strand, Ye Zhu, Marissa Caldwell
  • Patent number: 10547083
    Abstract: Electrolyte formulations including additives or combinations of additives. The electrolyte formulations are useful in lithium ion battery cells having lithium titanate anodes. The electrolyte formulations provide low temperature power performance and high temperature stability in such lithium ion battery cells.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 28, 2020
    Assignees: WILDCAT DISCOVERY TECHNOLOGIES, INC., JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand
  • Patent number: 10490854
    Abstract: A battery including an anode, a cathode, a separator, and a liquid electrolyte including a lithium salt, a non-aqueous solvent, and an additive compound including a functionalized matrix having a polymer or copolymer or silica. The cathode material can be an NMC or LCO material. The electrode formed from the cathode or anode material can include a matrix additive. The matrix additive can be adhered to the separator or other inert component of the battery.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 26, 2019
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Bin Li, Tanghong Yi
  • Patent number: 10461360
    Abstract: An electrode formulation including a polymer, which can be ion-conducting or non-conducting; an ion-conducting inorganic material; a lithium salt; and optionally an additive salt.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 29, 2019
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Cory O'Neill, Bin Li, Alex Freigang, Deidre Strand
  • Publication number: 20190260079
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Publication number: 20190157717
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a dicarbonate group or are an organo-metallic hydride.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Patent number: 10263283
    Abstract: An electrolyte formulation including additive compounds, additive salts, or combinations thereof to improve both low temperature and high temperature performance of lithium ion batteries as compared to conventional electrolytes. Some of these embodiments further include solvents in the electrolyte solution.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: April 16, 2019
    Assignee: Wildcat Discovery Technologies, Inc
    Inventors: Cory O'Neill, Deidre Strand
  • Publication number: 20190081357
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a nitrate group.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 14, 2019
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Patent number: 10205158
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 12, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Patent number: 10199687
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a dicarbonate group or are an organo-metallic hydride.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: February 5, 2019
    Assignee: Wildcat Discovery Technologies, Inc
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Patent number: 10128537
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a nitrate group.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: November 13, 2018
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Publication number: 20180309158
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Applicants: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Patent number: 10079406
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 18, 2018
    Assignees: Wildcat Discovery Technologies, Inc, Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Publication number: 20180261877
    Abstract: A lithium ion battery having an anode, a solid electrolyte, and a cathode. The cathode includes an electrode active material, a first lithium salt, and a polymer material. The solid electrolyte can include a second lithium salt. The solid electrolyte can include a ceramic material, a lithium salt, and a polymer material.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Inventors: Deidre Strand, Marissa Caldwell