Patents by Inventor Deok-Ho Cho

Deok-Ho Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083384
    Abstract: A vehicle seat reinforcement device includes a leg portion mounted on a floor panel, a seat cushion frame slidably mounted on the leg portion, and a load reinforcing structure connected between the leg portion and the seat cushion frame, wherein when a seat belt anchorage load is transferred to the seat cushion frame, the seat cushion frame is locked to the leg portion by the load reinforcing structure.
    Type: Application
    Filed: February 3, 2023
    Publication date: March 14, 2024
    Applicants: Hyundai Motor Company, Kia Corporation, Daechang Seat Co.,LTD-Dongtan, Hyundai Transys Inc.
    Inventors: Sang Soo LEE, Chan Ho JUNG, Mu Young KIM, Sang Hark LEE, Ho Suk JUNG, Deok Soo LIM, Sang Do PARK, In Sun BAEK, Sin Chan YANG, Chan Ki CHO, Myung Soo LEE, Jae Yong JANG, Jun Sik HWANG, Ho Sung KANG, Hae Dong KWAK, Hyun Tak KO
  • Publication number: 20140235016
    Abstract: Provided is a method of fabricating a semiconductor package, including preparing a die including a first metal layer and a second metal layer which are sequentially stacked on a silicon substrate, preparing a package substrate including a lead frame, and forming an adhesive layer between the lead frame and the first metal layer and attaching the die to the package substrate, wherein the forming of the adhesive layer is performed by eutectic bonding between the silicon substrate and the second metal layer. According to the semiconductor package according to an embodiment of the present invention, an adhesive layer can be easily formed by eutectic bonding without a process of forming a preform.
    Type: Application
    Filed: January 14, 2014
    Publication date: August 21, 2014
    Applicants: SIGETRONICS Inc., Electronics and Telecommunications Research Institute
    Inventors: Jong-Moon PARK, Jin Ho LEE, Deok-Ho CHO, Kyu-Hwan SHIM
  • Patent number: 6562688
    Abstract: Disclosed are a method for manufacturing a homojunction or heterojunction bipolar device and a structure of the bipolar device manufactured by the method.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 13, 2003
    Assignee: ASB, Inc.
    Inventors: Tae-Hyeon Han, Byung Ryul Ryum, Soo-Min Lee, Deok-Ho Cho
  • Patent number: 6552374
    Abstract: Disclosed are a method for forming a base layer by epitaxial growth technology of a heterojunction bipolar device and a structure of the bipolar device manufactured by the method.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: April 22, 2003
    Assignee: ASB, Inc.
    Inventors: Tae-Hyeon Han, Byung Ryul Ryum, Soo-Min Lee, Deok-Ho Cho
  • Patent number: 6462397
    Abstract: The present invention is related to a bipolar transistor in which the in-situ doped epitaxial Si or SiGe base layer is used instead of using an ion-implanted Si base, in order to achieve higher cutoff frequency. The SiGe base having the narrower energy bandgap than the Si emitter allows to enhance the current gain, the cutoff frequency(fT), and the maximum oscillation frequency (fmax). The narrow bandgap SiGe base also allows to have higher base doping concentration. As a result, the intrinsic base resistance is lowered and the noise figure is thus lowered. Parasitic base resistance is also minimized by using a metallic silicide base ohmic electrode. The present invention is focused on low cost, high repeatability and reliability by simplifying the manufacturing process step.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: October 8, 2002
    Assignee: ASB, Inc.
    Inventors: Byung Ryul Ryum, Tae Hyeon Han, Soo Min Lee, Deok Ho Cho
  • Publication number: 20020094654
    Abstract: Disclosed are a method for forming a base layer by epitaxial growth technology of a heterojunction bipolar device and a structure of the bipolar device manufactured by the method.
    Type: Application
    Filed: January 17, 2001
    Publication date: July 18, 2002
    Inventors: Tae-Hyeon Han, Byung Ryul Ryum, Soo-Min Lee, Deok-Ho Cho
  • Publication number: 20020079510
    Abstract: Disclosed are a method for manufacturing a homojunction or heterojunction bipolar device and a structure of the bipolar device manufactured by the method.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventors: Tae-Hyeon Han, Byung Ryul Ryum, Soo-Min Lee, Deok-Ho Cho
  • Publication number: 20020058388
    Abstract: The present invention is related to a bipolar transistor in which the in-situ doped epitaxial Si or SiGe base layer is used instead of using an ion-implanted Si base, in order to achieve higher cutoff frequency. The SiGe base having the narrower energy bandgap than the Si emitter allows to enhance the current gain, the cutoff frequency (fT), and the maximum oscillation frequency (fmax). The narrow bandgap SiGe base also allows to have higher base doping concentration. As a result, the intrinsic base resistance is lowered and the noise figure is thus lowered. Parasitic base resistance is also minimized by using a metallic silicide base ohmic electrode. The present invention is focused on low cost, high repeatability and reliability by simplifying the manufacturing process step.
    Type: Application
    Filed: October 22, 2001
    Publication date: May 16, 2002
    Inventors: Byung Ryul Ryum, Tae Hyeon Han, Soo Min Lee, Deok Ho Cho
  • Patent number: 6362066
    Abstract: The present invention is related to a bipolar transistor in which the in-situ doped epitaxial Si or SiGe base layer is used instead of using an ion-implanted Si base, in order to achieve higher cutoff frequency. The SiGe base having the narrower energy bandgap than the Si emitter allows to enhance the current gain, the cutoff frequency (fT), and the maximum oscillation frequency (fmax). The narrow bandgap SiGe base also allows to have higher base doping concentration. As a result, the intrinsic base resistance is lowered and the noise figure is thus lowered. Parasitic base resistance is also minimized by using a metallic silicide base ohmic electrode. The present invention is focused on low cost, high repeatability and reliability by simplifying the manufacturing process step.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: March 26, 2002
    Assignee: ASB Inc.
    Inventors: Byung Ryul Ryum, Tae Hyeon Han, Soo Min Lee, Deok Ho Cho
  • Patent number: 6337494
    Abstract: Disclosed is a super self-aligned heterojunction bipolar transistor which is capable of miniaturizing an element, simplifying the process step thereof without using a trench isolation process and a sophisticated selective epitaxial growth (SEG) processes. According to this invention, the sophisticated isolation and the SEG techniques are derived by using simple and popular processes. The base layer has multi-layer structure being made of a Si, an undoped SiGe, a SiGe doped a p-type impurity in-situ and Si. Also, the selective epitaxial growth is not required. Thus, it can be less prone to a flow of leakage current or an emitter-base-collector short effect.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: January 8, 2002
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byung Ryul Ryum, Deok Ho Cho, Tae Hyeon Han, Soo Min Lee
  • Patent number: 6190984
    Abstract: The invention relates to a method for manufacturing a super self-aligned heterojunction bipolar transistor which is capable of miniaturizing an element, simplifying the process step thereof by employing a selective collector epitaxial growth process without using a trench for isolating between elements. According to the invention, isolation between elements is derived by using a mask defining an emitter region and a second spacer. The base layer has multi-layer structure being made of a Si, an undoped SiGe, a SiGe doped a p-type impurity in-situ and Si. Also, the selective epitaxial growth for a base is not required. Thus, it can be less prone to a flow of leakage current or an emitter-base-collector short effect.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: February 20, 2001
    Assignees: Electronics and Telecommunications Research Institute, Korea Telecommunication Authority
    Inventors: Byung-Ryul Ryum, Deok-Ho Cho, Tae-Hyeon Han, Soo-Min Lee, Kwang-Eui Pyun
  • Patent number: 6140195
    Abstract: The present invention provides a collector device in a bipolar device, having a lateral collector structure on a buried oxide layer. This collector has a high breakdown voltage for high power and operating at a high speed, by isolating a horizontal collector from a substrate by a buried oxide film and horizontally connecting a buried collector to a collector. The buried collector film is formed on the buried insulating film, surrounding the collector film and being horizontally connected to the collector film.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: October 31, 2000
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byung-Ryul Ryum, Soo-Min Lee, Deok-Ho Cho, Tae-Hyeon Han
  • Patent number: 6124614
    Abstract: The present invention relates to a metal silicon field effect transistor (MOSFET), and more particularly to a MOSFET, using a Si or SiGe channel to effectively adjust threshold voltage. The transistor according to the present invention can solve the problems, such as the punch-through caused by the short distance between the source region and the drain region, the decrease of the breakdown voltage between the source region and the drain region and the leakage current flowing into the bulk region beneath the channel due to the drain-induced barrier lowering. Furthermore, because the source region and the drain region are isolated from the semiconductor substrate by the lower insulation layer, the removal of the parasite junction capacitor speed up the transistor.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: September 26, 2000
    Assignee: Electronics and Telecommunications Research Insititute
    Inventors: Byung-Ryul Ryum, Soo-Min Lee, Deok-Ho Cho, Tae-Hyeon Han
  • Patent number: 5981345
    Abstract: The present invention relates to a metal silicon field effect transistor (MOSFET), and more particularly to a MOSFET, using a Si or SiGe channel to effectively adjust threshold voltage. The transistor according to the present invention can solve the problems, such as the punch-through caused by the short distance between the source region and the drain region, the decrease of the breakdown voltage between the source region and the drain region and the leakage current flowing into the bulk region beneath the channel due to the drain-induced barrier lowering. Furthermore, because the source region and the drain region are isolated from the semiconductor substrate by the lower insulation layer, the removal of the parasite junction capacitor speed up the transistor.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: November 9, 1999
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byung-Ryul Ryum, Soo-Min Lee, Deok-Ho Cho, Tae-Hyeon Han
  • Patent number: 5962879
    Abstract: The invention relates to a method for manufacturing a super self-aligned heterojunction bipolar transistor which is capable of miniaturizing an element, simplifying the process step thereof by employing a selective collector epitaxial growth process without using a trench for isolating between elements. According to the invention, isolation between elements is derived by using a mask defining an emitter region and a second spacer. The base layer has multi-layer structure being made of a Si, an undoped SiGe, a SiGe doped a p-type impurity in-situ and Si. Also, the selective epitaxial growth for a base is not required. Thus, it can be less prone to a flow of leakage current or an emitter-base-collector short effect.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: October 5, 1999
    Assignee: Electronisc and Telecommunications Research Institute
    Inventors: Byung-Ryul Ryum, Deok-Ho Cho, Tae-Hyeon Han, Soo-Min Lee, Kwang-Eui Pyun
  • Patent number: 5897359
    Abstract: There is disclosed a method of manufacturing a silicon/silicon germanium heterojunction bipolar transistor having a good conformity and an improved speed characteristic, which includes the steps of sequentially laminating an underlying nitride film, an oxide film, a polycrystalline silicon film and an upper nitride on a semiconductor substrate on which devices are separated and a collector is formed; sequentially etching said upper nitride film and said polycrystalline silicon film using the emitter as a mask, and then forming a side wall nitride film; selectively wet-etching said oxide film to form a side base linker opening; burying said base linker opening with a polycrystalline silicon; oxidizing said polycrystalline silicon film buried into said base linker opening and then removing said oxide film by means of the selective wet-etch process; removing said upper nitride and then forming a silicon/silicon germanium film as a base film on the exposed thereof; and forming an emitter said silicon/silicon germ
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: April 27, 1999
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Deok Ho Cho, Soo Min Lee, Tae Hyeon Han, Byung Ryul Ryum, Kwang Eui Pyun
  • Patent number: 5874347
    Abstract: Disclosed is a device isolating method of a semiconductor device, comprising the steps of sequentially forming a pad oxide film, a polysilicon film and an insulating layer, on a silicon substrate, said insulating layer being composed of a first silicon oxide film, a nitride film and a second silicon oxide film formed sequentially on the polysilicon film; defining active and inactive regions by using a patterned photomask; removing the insulating layer only on the inactive region so as to expose a surface of the polysilicon film; forming a side wall at both edges of the insulating layer on the active region, said side wall being composed of a nitride film; depositing a third silicon oxide film on the surface of the polysilicon film; removing the side wall and etching the substrate to a predetermined depth to form a trench; filling an insulating material into the trench and depositing it up to the second silicon oxide so as to form an insulating film for isolating; simultaneously removing the second silicon oxi
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: February 23, 1999
    Assignees: Electronics and Telecommunications Research Institute, Korea Telecommunications Authority
    Inventors: Byung-Ryul Ryum, Tae-Hyeon Han, Soo-Min Lee, Deok-Ho Cho, Jin-Young Kang
  • Patent number: 5798277
    Abstract: An improved method for fabricating a heterojunction bipolar transistor which includes the steps of forming a buried collector, a collector thin film, and a collector sinker on a semiconductor substrate in order, forming a first silicon oxide film, a base electrode polysilicon layer, a nitride film, and an oxidation film on a resulting substrate exposing the first silicon oxidation film, forming a spacer insulation film at the lateral side of the exposed region, and defining an activation region, exposing the collector thin film of the activation region using a mask, and forming an auxiliary lateral film for an isolation of the device, forming a selective collector region by ion-implantating a dopant to the activation region which is limited by the auxiliary lateral film, removing the auxiliary lateral film, etching the exposed portion in an anisotropic etching method, and forming a shallow trench for a device isolation, forming a polysilicon lateral film to have a height which is the same as the height of the
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: August 25, 1998
    Assignees: Electronics and Telecommunications Research Institute, Korea Telecommunication Authority
    Inventors: Byung-Ryul Ryum, Tae-Hyeon Han, Deok-Ho Cho, Soo-Min Lee, Kwang-Eui Pyun
  • Patent number: 5696020
    Abstract: Disclosed is a device isolating method of a semiconductor device, comprising the steps of sequentially forming a pad oxide film, a polysilicon film and an insulating layer, on a silicon substrate, said insulating layer being composed of a first silicon oxide film, a nitride film and a second silicon oxide film formed sequentially on the polysilicon film; defining active and inactive regions by using a patterned photomask; removing the insulating layer only on the inactive region so as to expose a surface of the polysilicon film; forming a side wall at both edges of the insulating layer on the active region, said side wall being composed of a nitride film; depositing a third silicon oxide film on the surface of the polysilicon film; removing the side wall and etching the substrate to a predetermined depth to form a trench; filling an insulating material into the trench and depositing it up to the second silicon oxide so as to form an insulating film for isolating; simultaneously removing the second silicon oxi
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 9, 1997
    Assignees: Electronics and Telecommunications Research Institute, Korea Telecommunication Authority
    Inventors: Byung-Ryul Ryum, Tae-Hyeon Han, Soo-Min Lee, Deok-Ho Cho, Jin-Young Kang
  • Patent number: 5696007
    Abstract: The invention relates to a method for manufacturing a super self-aligned heterojunction bipolar transistor which is capable of miniaturizing an element, simplifying the process step thereof by employing a selective collector epitaxial growth and a polycide base electrode without using a trench for isolating between elements, thereby enhancing the performance thereof, which comprises the steps of: forming sequently a first oxidation film, an electrically conducting thin film and a second oxidation film on top of a substrate; patterning the second oxidation film and the conducting thin film to form a preliminary spacer; removing an exposed portion of the first oxidation film, and selectively growing a collector layer; oxidizing the collector layer to form a thermal oxidation film, and removing the preliminary spacer; depositing a polysilicon and forming a silicon oxidation film and a polysilicon spacer on the second oxidation film and the removed portion of the preliminary spacer, respectively; exposing the bas
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: December 9, 1997
    Assignees: Electronics and Telecommunications Research Institute, Korea Telecommunication Authority
    Inventors: Byung-Ryul Ryum, Tae-Hyeon Han, Deok-Ho Cho, Soo-Min Lee, Kwang-Eui Pyun