Patents by Inventor Deqi Wang
Deqi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10256142Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.Type: GrantFiled: February 22, 2013Date of Patent: April 9, 2019Assignee: Novellus Systems, Inc.Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20190080914Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: ApplicationFiled: November 13, 2018Publication date: March 14, 2019Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
-
Patent number: 10211099Abstract: The methods, systems and apparatus described herein relate to chamber conditioning for remote plasma processes, in particular remote nitrogen-based plasma processes. Certain implementations of the disclosure relate to remote plasma inhibition processes for feature fill that include chamber conditioning. Embodiments of the disclosure relate to exposing remote plasma processing chambers to fluorine species prior to nitrogen-based remote plasma processing of substrates such as semiconductor wafers. Within-wafer uniformity and wafer-to-wafer uniformity is improved.Type: GrantFiled: December 19, 2016Date of Patent: February 19, 2019Assignee: Lam Research CorporationInventors: Deqi Wang, Gang Liu, Anand Chandrashekar, Tsung-Han Yang, John W. Griswold
-
Publication number: 20190019725Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: ApplicationFiled: September 6, 2018Publication date: January 17, 2019Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Patent number: 10170320Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: GrantFiled: May 16, 2016Date of Patent: January 1, 2019Assignee: Lam Research CorporationInventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
-
Patent number: 10103058Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: GrantFiled: April 7, 2017Date of Patent: October 16, 2018Assignee: Novellus Systems, Inc.Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20180277431Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: ApplicationFiled: May 29, 2018Publication date: September 27, 2018Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20180174901Abstract: The methods, systems and apparatus described herein relate to chamber conditioning for remote plasma processes, in particular remote nitrogen-based plasma processes. Certain implementations of the disclosure relate to remote plasma inhibition processes for feature fill that include chamber conditioning. Embodiments of the disclosure relate to exposing remote plasma processing chambers to fluorine species prior to nitrogen-based remote plasma processing of substrates such as semiconductor wafers. Within-wafer uniformity and wafer-to-wafer uniformity is improved.Type: ApplicationFiled: December 19, 2016Publication date: June 21, 2018Inventors: Deqi Wang, Gang Liu, Anand Chandrashekar, Tsung-Han Yang, John W. Griswold
-
Patent number: 9997405Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: GrantFiled: September 25, 2015Date of Patent: June 12, 2018Assignee: Lam Research CorporationInventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20170365513Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to ammonia vapor in a non-plasma process. Process parameters including exposure time, substrate temperature, and chamber pressure can be used to tune the inhibition profile. Also provided are methods of filling multiple adjacent lines with reduced or no line bending. The methods involve selectively inhibiting the tungsten nucleation to reduce sidewall growth during feature fill.Type: ApplicationFiled: July 3, 2017Publication date: December 21, 2017Inventors: Tsung-Han Yang, Anand Chandrashekar, Jasmine Lin, Deqi Wang, Gang Liu, Michal Danek, Siew Neo
-
Publication number: 20170278749Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: ApplicationFiled: April 7, 2017Publication date: September 28, 2017Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Patent number: 9653353Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: GrantFiled: March 27, 2013Date of Patent: May 16, 2017Assignee: Novellus Systems, Inc.Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20170133231Abstract: Methods for depositing extremely low resistivity tungsten in semiconductor processing are disclosed herein. Methods involve annealing the substrate at various times during the tungsten deposition process to achieve uniform tungsten layers with substantially lower resistivity.Type: ApplicationFiled: January 25, 2017Publication date: May 11, 2017Inventors: Hanna Bamnolker, Raashina Humayun, Deqi Wang, Yan Guan
-
Patent number: 9589808Abstract: Methods for depositing extremely low resistivity tungsten in semiconductor processing are disclosed herein. Methods involve annealing the substrate at various times during the tungsten deposition process to achieve uniform tungsten layers with substantially lower resistivity.Type: GrantFiled: December 19, 2013Date of Patent: March 7, 2017Assignee: Lam Research CorporationInventors: Hanna Bamnolker, Raashina Humayun, Deqi Wang, Yan Guan
-
Publication number: 20160343612Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: ApplicationFiled: May 16, 2016Publication date: November 24, 2016Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
-
Publication number: 20160190008Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: ApplicationFiled: December 10, 2015Publication date: June 30, 2016Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20160093528Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.Type: ApplicationFiled: September 25, 2015Publication date: March 31, 2016Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20160071764Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.Type: ApplicationFiled: February 22, 2013Publication date: March 10, 2016Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Patent number: 9240347Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).Type: GrantFiled: September 30, 2014Date of Patent: January 19, 2016Assignee: Novellus Systems, Inc.Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
-
Publication number: 20150179461Abstract: Methods for depositing extremely low resistivity tungsten in semiconductor processing are disclosed herein. Methods involve annealing the substrate at various times during the tungsten deposition process to achieve uniform tungsten layers with substantially lower resistivity.Type: ApplicationFiled: December 19, 2013Publication date: June 25, 2015Applicant: LAM Research CorporationInventors: Hanna Bamnolker, Raashina Humayun, Deqi Wang, Yan Guan